
1 Introduction

Here is something I wrote many years ago while working on the design of
anemometers for measuring shear stresses. Part of this work required mod-
elling and compensating for the transfer function of tubing systems. To do this
in real time we used TMS320 series DSPs, and and I impelemented some large
FIR filters using block-floating point FFTs.

This is is a general introduction to the FFT, and also discusses the computation
of power spectra and autocorrelation. This document is generated from LaTeX
using LaTeXML. Since some browsers do not support MathML (ie. Chrome),
the math display uses MathJax. Conversion is not too bad, though there are
some formatting problems eg. with tabbing environments.

2 The Discrete Fourier Transform

The Fourier transform allows an arbitrary function to be represented in terms
of simple sinusoids. The Fourier transform (FT) of a function f(t) is

F (ω) =

∫ ∞
−∞

f(t)e−iωtdt

For this integral to exist, f must be absolutely integrable. That is,∫ ∞
−∞
|f(t)|dt < ∞

However, it is possible to express the transforms of functions that are not abso-
lutely integrable (e.g. periodic) using the delta function δ. With this expression
of the function, if f is a periodic function with period T then its transform is
not continuous in ω but consists of impulses in the frequency domain separated
by 1/T .

The Discrete Fourier Transform (DFT) is the discrete-time equivalent of the
Fourier transform. A function sampled over a finite period of time is defined
by a time series { x(0), x(1), ..., x(N − 1) }. The Discrete Fourier Transform
(DFT) of x(t) is

X(k) =

N−1∑
n=0

x(n)e−i2πnk/N , k = 0, 1, ..., N − 1 (1)

For clarity the constant W is defined,

W = e−i2π/N

then, the sum becomes:

X(k) =

N−1∑
n=0

x(n)Wnk

The comparable inverse function is the Inverse Discrete Fourier Transform (IDFT):

1

x(t) =
1

N

N−1∑
k=0

X(k)W−nk

Note that when writing series, lower case letters indicate time-series, and upper
case letters denote their transforms.

The DFT is useful whenever a sampled function must be transformed between
the time- and frequency-domains. Applications of this sort include:

• Computation of power spectra for sampled signals.

• Frequency-domain design of digital filters.

Intensive research into signal processing algorithms during the 1960s led to the
development of a class of very efficient algorithms for the DFT. These Fast
Fourier-Transform (FFT) algorithms led to new applications such as:

• Digital filtering (convolution).

• Correlation.

In these applications, the frequency-domain is used as an intermediate stage to
make time-domain calculations more efficient.

3 The Fast Fourier Transform

The Fast Fourier Transform (or FFT) is a class of efficient algorithms for com-
puting the DFT. FFT algorithms rely on N being composite (ie. non-prime) to
eliminate trivial products. Where N = r1.r2...rn the complexity1 of the FFT
is O(N(r1 + r2 + ... + rn)). The basic radix-2 algorithm published by Cooley
and Tukey (1965) relies on N being a power of 2 and is O(N log2N). Other al-
gorithms exist which give better performance. Higher radix algorithms achieve
slightly better factorisation and cut down on loop overheads. Winograd’s fourier
transform algorithm is based on very efficient short convolutions (Blahut, 1985).
However, the saving from using these algorithms is not more than 40%, and this
is at the expense of a more complex program. In addition to saving run-time,
the FFT is more accurate than straightforward calculation of the DFT since the
number of arithmetic operations is less, reducing the rounding error. Stockham
(1966) found that two cascaded 256-point FFTs produced half as much error as
a single DFT.

In order to derive the basic FFT, assume that N is non-prime and make the
factorisations:

N = A B Composite size
n = b + aB time index
k = c + dA frequency index

1 When an algorithm has complexity O(n), kn is an upper bound on its run-time, for some
constant k .

2

where a, b, c and d are all integers.

Rewrite the DFT sum

X(c+ dA) =

N−1∑
n=0

x(n)Wn(c+dA)

=

B−1∑
b=0

A−1∑
a=0

x(b+ aB)W (b+aB)(c+dA)

=

B−1∑
b=0

A−1∑
a=0

x(b+ aB)W bc W bdA W acB W adBA

Now W adBA = W adN = 1, since a and d are both integers. Rearranging the
remaining factors gives

X(c+ dA) =

B−1∑
b=0

W bdA W bc
A−1∑
a=0

x(b+ aB)W acB (2)

This complex expression can be readily understood when decomposed into a
series of steps.

1. Let z1(a, b) = x(b+ aB).

2. Let z2(c, b) =
∑A−1
a=0 z1(a, b)W acB .

3. Let z3(c, b) = W bcz2(c, b).

4. Let z4(c, d) =
∑B−1
b=0 z3(c, b)W bdA.

5. Let X(c+ dA) = z4(c, d).

When each substitution is made into the previous expression, the result is iden-
tical to Equation 2. However, each step is relatively simple:

1. Map the input vector into a 2-dimensional array in row-major order.

2. Take the DFTs of the columns in the array.

3. Scale each element of the array by a complex exponential.

4. Take DFTs of all the rows in the array.

5. Now map the 2-dimensional array into the output vector in column-major
order.

Figure 1 shows the basic structure of the process. The computation takes place
on the rows, columns and elements of a 2-D array formed from the original
sequence. The N -point DFT has been decomposed into a series of steps.

1. Mapping [N] → [A x B]

2. B A -point DFTs (one per column)

3

Figure 1: 2-D mappings in the FFT.

3. N complex multiplications

4. A B -point DFTs (one per row)

5. Mapping [A x B] → [N]

Steps 1, 3 and 5 are all O(N). In the worst case, A and B might be prime and
so the DFTs could not be further factorised. In this case the number of complex
multiplications is

B.A2 + N + A.B2 = N(A+B + 1)

and additions,

BA(A− 1) + AB(B − 1) = N(A+B − 2)

so the overall complexity is O(N(A + B + 1)). If A is composite (eg. equal to
CD) then the A2 representing the contribution of the A -point DFTs can be
replaced by A(C + D) giving O(N(B + C + D)). Thus it is advantageous to
choose N to be highly composite.

The previous discussion involved factorising the DFT when N is non-prime.
Cooley and Tukey’s original FFT procedure involves choosing N = 2L, for some
integer L. Putting A = n/2 and B = 2 into equation 2 gives

X(c) =

n/2−1∑
a=0

x(2a)W 2ac +W c

n/2−1∑
a=0

x(2a+ 1)W 2ac (3)

X(c+ n/2) =

n/2−1∑
a=0

x(2a)W 2ac −W c

n/2−1∑
a=0

x(2a+ 1)W 2ac (4)

The first equation is for d = 0 ; the second is for d = 1. Together, these are the
recurrence relations for the decimation-in-time (DIT) FFT. Putting A = 2 and
B = n/2 gives instead

4

X(2d) =

n/2−1∑
b=0

[x(b) + x(b+ n/2)]W 2bd (5)

X(2d+ 1) =

n/2−1∑
b=0

W b[x(b)− x(b+ n/2)]W 2bd (6)

The first equation is for a = 0 ; the second is for a = 1. These are the recur-
rence relations for the decimation-in-frequency (DIF) FFT. These are the two
canonical forms of the radix-2 FFT. The computational complexity of the two
forms are identical. To illustrate how these relations are used, the structure of
the DIT FFT is presented here in a graphical form.

Equation 3 expresses a N -point DFT in terms of two N/2 -point DFTs: the
DFT of the even terms of the time-series, and the DFT of the odd terms.
The equation can be applied recursively to these DFTs until N = 1, when the
transform becomes trivial. Figure 2 shows these relationships graphically. A
DFT is represented by a block in the diagram with inputs 0 (top) to N − 1
(bottom) on the left, and outputs 0 (top) to N − 1 (bottom) on the right.
An open circle denotes a complex addition. A labelled line denotes a complex
multiplication by the value of the label. The figure shows the flow-graphs for 8,
4, and 2-point DFTs.

Figure 2: Partial signal-flow graphs for DIT FFT (N=2,4, and 8).

Expanding each of the DFT blocks in Figure 2 gives the graph for the 8-point
DIT FFT shown in Figure 3. It also shows the flow graph for the DIF FFT,
which can be derived from Equation 5 in a similar way. The major element in
the graphs is a pair of parallel line connected by crossing lines. This structure

5

Figure 3: Expanded flow-graphs for 8-point DIT and DIF FFTs.

is often termed a “butterfly” calculation, because of its graphical appearance.
Each butterfly computation replaces its two inputs with two outputs, without
affecting (or being affected by) any other butterfly at the same level in the flow
graph. Thus, computation of the FFT can be done in-place with no intermediate
storage required. However, the inputs to the DIT FFT (and the outputs of
the DIF FFT) are not in the regular order due to the odd/even separation at
each stage. In fact, the input terms are in bit-reversed order2, so scrambling (or
unscrambling) of the data is an important stage in the transform. In applications
where data is transformed, adjusted, and then inverse-transformed it is possible
to avoid this scrambling by using the DIT form for the forward transform, and
the DIF form for the inverse transform (or vice versa).

The FFT consists of log2N stages, each consisting of N/2 butterflies. Each
butterfly consists of 2 complex additions and one complex multiplication. Thus
the FFT requires N log2N additions and (N/2)log2N multiplications and so
is O(N log2N). A complex addition consists of 2 real additions. A complex
multiplication consists of 4 real multiplications and two real additions. Letting
α be the real multiplication time, β the real addition time,

tCA = 2β the time for a complex addition
tCM = 4α+ 2β the time for a complex multiplication

Each butterfly takes 2tCA+tCM = 4α+6β, and there are N/2 butterflies. Thus
the proportionality constant for the FFT is

2 A number is bit-reversed for k digits by writing the k digits of its binary representation
(including leading zeros) in reverse order. For example, when k=3, the number 3 (011) bit-
reversed is 6 (110). When k=4, 3 (0011) bit-reversed is 12 (1100).

6

tfft = tCA + tCM/2 = 2α+ 3β

and the run-time is
tfftN log2N

4 Efficient DFT of a Real Series

When a series is real, its DFT is hermitian3. Calculating its DFT directly using
the complex DFT involves computing redundant information. There are two
optimisations for real series that are dependent on the properties of symmetry
and the DFT. They will work with the FFT, but do not depend on it.

4.1 Simultaneous DFT of two Real Series

Suppose x(n) and y(n) are two real sequences of length N . Form the complex
sequence h(n)

h(n) = x(n) + iy(n)

Since the DFT is linear,

H(k) = X(k) + iY (k) (7)

Since x(n) and y(n) are both real, their transforms are hermitian, ie.

X(k) = X(N − k)∗

Y (k) = Y (N − k)∗

From (7),
H(N − k)∗ = X(N − k)∗ − iY (N − k)∗

= X(k)− iY (k)
(8)

Now, form the sum and difference of equations 7 and 8, giving:

X(k) = (H(N − k)∗ +H(k))/2
Y (k) = i(H(N − k)∗ −H(k))/2

(9)

Thus, a length-N DFT and 2N complex additions, gives the DFT of two length-
N real sequences.

4.2 DFT of a Real Series using Half-Length Complex DFT

Suppose x(n) is a real sequence length 2N . Form two length-n real sequences

f(n) = x(2n)

g(n) = x(2n+ 1)

3A real function f , is said to have even symmetry when f(−x) = f(x) and odd symmetry
when f(−x) = −f(x). A complex function is said to have hermitian symmetry when f(−x) =
f(x)∗, where ∗ denotes the complex conjugate (reflection in the imaginary axis). Note that
all real functions are hermitian, but not all hermitian functions are real.

7

Now consider the transform of x

X(k) =

2N−1∑
n=0

x(n) exp(−i2πnk/2N)

=

N−1∑
n=0

x(2n) exp(−i2π2nk/2N) +

N−1∑
n=0

x(2n+ 1) exp(−i2π(2n+ 1)k/2N)

=

N−1∑
n=0

x(2n) exp(−i2πnk/N) + exp(−iπk/N)

N−1∑
n=0

x(2n+ 1) exp(−i2πnk/N)

= F (k) + e−iπk/NG(k)

F and G are the transforms of the real sequences f and g. Equation 9 gives an
efficient procedure for calculating the DFT of two real sequences. Let

h(n) = f(n) + ig(n)

Then

F (k) = (H(N − k)∗ +H(n))/2

G(k) = i(H(N − k)∗ −H(n))/2

So we have

X(k) = (H(N − k)∗ +H(k))/2 + eiπk/N i(H(N − k)∗ −H(k))/2

The symmetry in this computation allows X(k) and X(N −K) to be computed
simultaneously. Thus the DFT of a length-2N real sequence can be computed
using a length-N DFT, 3N/2 complex additions and N/2 complex multiplica-
tions. The run-time is therefore

N

2
tCM +

3N

2
tCA + t fft

2
N (log2N − 1)

For N ≥ 8 this is less than the complex FFT time

tfftN log2N

Ignoring the linear terms, the speed advantage of the real FFT over the complex
FFT for large N is

2
log2N

log2N − 1
≈ 2

Thus, described technique doubles the speed of the FFT for real data. It also
halves the storage requirements, since only half of the transform needs to be
represented.

5 Efficient Convolution and Correlation using
the FFT

Two important processes in signal analysis are

8

Convolution c(k) =
∑N
n=0 a(k)b(n− k)

Correlation c(k) =
∑N
n=0 a(k)b(n+ k)

(10)

Suppose that the series a, b and c are length N . Each of the N values of k
in (10) requires an integration over N data points, so the processes are both
O(N2). However, the convolution theorem states that in the frequency domain4

Convolution C(k) = A(k)B(k)
Correlation C(k) = A(k)B(k)∗

(11)

The computation in the frequency domain is O(N). The cost of transforming
to and from the frequency domain using the FFT is O(N log2N), which is the
most complex part of the process. The speed-up is proportional to N/log2N ,
so for large correlations or convolutions the advantage of the frequency domain
computation is considerable. For example, when N = 210 the order of the
advantage is 210/10 ≈ 100, ie. the time-domain computation is roughly 100
times slower than the frequency-domain computation.
The use of the convolution theorem is not quite as simple as (11) suggests,
since using the DFT gives a cyclic convolution. This means that the sums
and differences in the index of b in (10) are modulo N . The effect of this is to
make the first and last data points contiguous, causing the convolution to “wrap
around” the end of the record. Thus, even for a short convolution the initial
output is affected by the data at the end of the record. This problem is usually
solved by appending zeroes to the original series. This cancels the contribution
of the terms that “wrap around” from the end of the series, producing an acyclic
convolution.

6 Filtering using the FFT

Filtering involves acyclic convolution. The two standard sectioning techniques,
which can be found in most DSP textbooks, are the “select-save” procedure
(Helms, 1967) and the “overlap-add” procedure (Stockham, 1966). The “select-
save” procedure uses overlapped input sections to produce non-overlapping out-
put sections. Some of the computed output is not valid and must be discarded.
The “overlap-add” procedure uses non-overlapped input sections to produce
overlapping output sections that must be added together. The “overlap-add”
method requires slightly more computation (since the output sections must be
added) whereas the “select-save” method requires slightly more storage (to store
the overlapping input). Otherwise the complexity of the two procedures is iden-
tical. The overlap-add procedure is described here.

Suppose that the input sequence x(n) has length N . It is to be convolved with
the sequence h(n) which represents the inverse transform of the ITF for the
system (ie. the impulse response of the correction filter). Suppose h(n) has
length L. A length M of input section is chosen such that M ≥ L. M is the
length of the transform operations, so if using a radix-2 FFT, it must be a power
of 2. The length of the output section is M + L − 1. The last L + 1 points of

4 Recall that upper-case letters denote the transform of a lower-case series.

9

output must be added to the start of the next output section. The function
h(n) is modified by appending M − L zeros as follows

a(n) =

{
h(n), 0≤ n < L

0, L≤ n < M

Define the j th input section

xj(n) = x(n+ j(M − L+ 1)), 0 ≤ n < M − L+ 1

Each input section is extended to M points as follows

bj(n) =

{
xj(n), 0 ≤ n < M − L+ 1

0, M − L+ 1 ≤ n < M

The product
Wj(k) = Bj(k) · A(k)

gives the cyclic convolution of the two sequences a(n) and bj(n). However, the
modifications ensure that:

1. The first M − L+ 1 points of output are correct.

2. The last L− 1 points are contribution of the end of the current section to
the start of the next section.

The points in (2) are added to the start of the output for section xj+1. The
algorithm can be summarised as follows. Suppose that y(n) is the output of the
convolution.

(1) Form a(n) and compute its transform A(k)
(2) For j = 0 to N/(M − L+ 1) do

a) Form bj(n) and compute the DFT Bj(k)
b) Calculate Wj = A(k) · Bj(k)
c) Compute the IDFT wj(n)
d) Let wj′(n) = wj(n) + wj−1′(M − L+ 1 + n) for 0 < n ≤M − L
e) Let yj(n) = wj′(n) for 0 ≤ n ≤M − L

The convolution is computed with 2N/(M −L+ 1) FFT operations. The com-
putation time per sample for complex data is thus

T =
2tfftM log2M +MtCM

(M − L+ 1)

The optimal values of L and M can be found by minimising this expression.
According to Helms (1967) the optimal value of M is approximately Llog2L but
departures from this value can be made without greatly increasing the running
time.

10

7 Efficient Calculation of Autocorrelation and
Power Spectra

Estimation of autocorrelation and power spectra are classical problems and
are well described in the literature (Oppenheim and Schafer, 1975; Geçinki
and Yavuz, 1983). They are closely related, since the power spectrum is the
fourier transform of the autocorrelation. Two techniques for estimation of power
spectra are:

(1) The indirect method - First, the autocorrelation of the sequence is com-
puted. This can be done in the time-domain or in the frequency domain (using
the FFT). The autocorrelation function is then transformed into the frequency
domain, giving the power spectrum. To reduce leakage, the autocorrelation
function is multiplied by a window before transformation.

(2) The direct method - A short section of the input is transformed into the
frequency domain (using the FFT). The transformed values are each multiplied
by their complex conjugate, giving an estimate of the power spectrum for that
section. The process is repeated for a number of sections and the results are
added to give the final power spectrum. To reduce leakage, each section of the
time-domain data is multiplied by a window function before transformation.
This technique is due originally to Welch (1967).

Window functions are necessary to reduce leakage in the power spectrum. The
direct method appears to be more efficient, but the transform of its spectral
estimator is a measure of cyclic correlation. If only the power spectrum is
desired, the direct method is more efficient. However, if both the autocorrelation
and the power spectrum are desired the indirect method is preferred. It also
gives lower variance in the estimate (Geçinki and Yavuz, 1983).

An efficient algorithm for computing autocorrelation is given by Rader (1970).
Suppose that x(n) is the input sequence of length N . The inverse transform
of X(k)X∗(k) gives the cyclic autocorrelation. To get a linear correlation, an
equal number of zeros must be appended to the input sequence. However, in
practice N is very large compared with the number of lags desired. In this,
the data can be processed in smaller sections (as described in section 6). Let
xj(n) denote a length M sequence formed by taking M/2 points from x and
appending M/2 zeros as follows

xj(n) =

{
x(n+ jM/2) 0 ≤ n < M/2

0 M/2 ≤ n < M

Let yj(n) = x(n+ jM/2) 0 ≤ n < M

In the frequency domain form the product

Wj = Xj
∗(k) · Yj(k)

The first M/2 elements of wj represent the contribution of the j th section of x
to the autocorrelation. Let

Zj(k) =

j∑
m=0

Wm(k) = Zj−1(k) +Wj(k)

11

Then the autocorrelation is given by

R(k) = (1/N)IDFT {Z(2N/M)−1(k)}

Rader employs the simplification

Yj(k) = Xj(k) + (−1)kXj+1(k)

Thus, it is never necessary to form the sequence yj(n) or take its transform
Yj(k) so the required number of DFT operations is halved. Multiplying a DFT
by (−1)k corresponds to a shift in time of M/2 positions. Rader’s efficient
algorithm can be summarised:

(1) Form x0(n) and calculate its transform X0(k)
Let Z0(k) = 0, for 0 ≤ k < M

(2) For 0 ≤ j < 2N/M − 2 do
a) Form xj+1(n) and compute Xj+1(k)
b) compute Zj+1(k) = Zj(k) +X∗j (k)[Xj(k) + (−1)kXj+1(k)]

(3) Let R(s) = 1
N IDFT (Z2N/M−1(k))

keeping only the first M/2 + 1 values.

Thus the autocorrelation is computed with 2N/M DFT operations (including
the final IDFT). However, the number of lag values is not rigidly tied to the
transform length M . Lag values pM/2 ≤ s ≤ (p + 1)M/2 can be obtained
by accumulating

Zj+1
p(k) = Zj

p(k) +Xj
∗(k)[Xj+p(k) + (−1)kXj+p+1(k)]

Suppose that L lag values are desired. The computation time (using the complex
FFT) per sample is

tR =
2

M
(tfftM log2M + tCMAL)

= 2tfftlog2M + 2tCMAL/M

where tCMA = 2tCA+ tCM is the time per point to compute 2(b) above. tR can
be minimised by choosing M appropriately. Analytically, the minimum based
on a zero derivative is

M = Ltcma ln(2)/tfft

With the complex FFT, tCMA/tfft = 2, so optimum performance obtains when
M ≈ 1.38L. With the real FFT (for large M) tCMA/tfft ≈ 4 so M ≈ 2.77L.
Using the radix-2 FFT, M and N must be powers of 2, so if M = 2.77L, L = 2n,
and M = 2m

2m = ln(2)tCMA/tfft2
n

m− n =
ln(ln(2)tCMA/tFFT)

ln(2)

Thus, for M = 2.77L, m ≈ n+ 1.

12

	Introduction
	The Discrete Fourier Transform
	The Fast Fourier Transform
	Efficient DFT of a Real Series
	Simultaneous DFT of two Real Series
	DFT of a Real Series using Half-Length Complex DFT

	Efficient Convolution and Correlation using the FFT
	Filtering using the FFT
	Efficient Calculation of Autocorrelation and Power Spectra

