
Distributed Query Processing for Mobile Surveillance

Stewart Greenhill and Svetha Venkatesh
Department of Computing, Curtin University of Technology

stewartg@cs.curtin.edu.au, svetha@cs.curtin.edu.au

ABSTRACT
Addressing core issues in mobile surveillance, we present an
architecture for querying and retrieving distributed, semi-
permanent multi-modal data through challenged networks
with limited connectivity. The system provides a rich set of
queries for spatio-temporal querying in a surveillance con-
text, and uses the network availability to provide best qual-
ity of service. It incrementally and adaptively refines the
query, using data already retrieved that exists on static plat-
forms and on-demand data that it requests from mobile plat-
forms. We demonstrate the system using a real surveillance
system on a mobile 20 bus transport network coupled with
static bus depot infrastructure. In addition, we show the
robustness of the system in handling different conditions in
the underlying infrastructure by running simulations on a
real, but historic dataset collected in an offline manner.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing

General Terms
Algorithms, Measurement

Keywords
mobile surveillance, distributed query processing, video in-
dexing, virtual observer, spatial query, visibility query.

1. INTRODUCTION
Conventional architectures have involved using networks

of static cameras for wide area surveillance. However, these
architectures are limited in the spatial coverage that is pos-
sible. An exciting new infrastructure is a network of mobile
cameras, such as that mounted on public transport networks
[6]. This mobile network facilitates collection of surveillance
data over a far wider area than would be possible with fixed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’07, September 23–28, 2007, Augsburg, Bavaria, Germany.
Copyright 2007 ACM 978-1-59593-701-8/07/0009 ...$5.00.

infrastructure of sensors. However, these networks present
new and challenging problems, particularly in the area of
distributed querying. The problems arise because there is
too much data, it is distributed in mobile and static plat-
forms and cannot be accessed in continuous fashion.

In conventional fixed-camera networks, the connectivity
between the sensors and the data center is generally fixed
and predictable. In contrast, a mobile surveillance network
relies on temporary connections between the sensors and the
network to retrieve recorded data. Generally the bandwidth
available in these connections is insufficient to retrieve all of
the recorded data, so it is important that the sensor network
facilitate retrieval based on demand.

Previous works on distributed querying have not dealt
with the specific challenges that arise in this environment,
in particular, the nature of the distributed, semi-permanent
data, the lack of continuous access and the inability to have
the bandwidth capacity to download all the data. Most
assume the infrastructure is such that all the data can be
accessed, continuously, even though it is distributed. Addi-
tionally, these systems address database type queries. Surveil-
lance queries, on the other hand, have different intrinsic
properties: the need to specify not only spatio-temporal con-
straints, but also the capacity to vary attributes like sam-
pling rates in the query to match degree of interest in an
area. No previous works has addressed these specific chal-
lenges in a distributed framework.

Wireless sensor networks share many issues with mobile
camera surveillance: limited connectivity, limited storage
and processing power. In ad-hoc sensor networks routing
is an important issue, but data volumes are usually small
so providing a route can be found it is usually possible to
deliver the data. These networks generally do not deal with
data such as video and audio.

There are also limited attempts at trying to tackle mobile
networks of cameras. A notable exception is the work of
[6] allowing a user to visualise a selected place at a selected
time in a network of mobile sensors. However, this work is
limited in two main ways: (a) The main query operators are
simple and restricted to single camera, fixed sampling rate
visibility queries. These methods lack the ability to specify
variable sampling rates, multiple cameras and more complex
queries like coverage based queries. (b) The work addressed
the query/visualisation framework but did not address dis-
tributed query processing or data storage or data collection.

Thus, the open problem involves querying in a sensor net-
work system, in which data is:

• distributed between static and mobile platforms

• semi-permanent, in that many of the storage units
have to be re-used frequently

• available in parts, in that some data to answer a query
may have been retrieved and thus available, whilst
some data may be on the mobile device and thus needs
to be retrieved on demand

• retrievable on demand, but the network prohibits com-
plete retrieval of data.

To address these open problems and tackle the complexity
of the data and the infrastructure, we need a system archi-
tecture to:

• Coordinate requests from multiple clients using a rich
set of query operators

• Use available network connectivity to provide the best
quality of service. This means: adaptively decide where
and when queries are executed. The system needs to
efficiently minimise the amount of data that needs to
be transmitted between network nodes.

• Allow for query results to be adaptively refined over
time. Here we need to distinguish between the poten-
tial and actual completeness of a query. For a new
query, a certain amount of data may be already avail-
able in the network. In addition, it may be known that
more data is available but that the user may need to
wait for sensor nodes to come on-line before the data
can be retrieved.

We describe an architecture for distributed querying across
static and mobile platforms with multi-modal data (video
and GPS). Our solution is a distributed storage system with
retrieval on demand. The query drives a best effort at data
retrieval. We introduce new querying operators, the cover-
age operator that can give low level of detail over large spa-
tial areas, and generalise the observation operators to pro-
vide high level of detail over small spatial areas. We describe
the query resolution process, the process of mapping spatial
queries and trajectory data to temporal video segments and
the subsequent distributed processing system that describes
how the query resolution is performed in this distributed
network. The result of the users query in the space cov-
ered by these sensors is the reconstruction of the scene at
these points using observations that are either available or
retrieved on demand. We show its application to a mobile 20
bus network in conjunction with a static bus depot network
for surveillance and additionally, we demonstrate the prop-
erties of the system using a large set of real data collected in
an offline manner, so that we can simulate the performance
under differential properties of the infrastructure. The novel
aspects are a system that:

• accommodates distributed static and mobile video data

• accommodates on-demand data in an adaptive fashion

• introduces new kinds of spatial-temporal queries, par-
ticularly geared towards multimedia surveillance

The significance of the work lies in the development of
fundamental new paradigm for formulating the unique chal-
lenges in multimedia, sensor networks and the presentation

of a solution to spatio-temporal querying in such a net-
work, efficiently managing retrieval of available data and
on-demand data.

The layout of this paper is as follows: section 3 describes
the sensor network, and section 4 describes the architecture
of the application. Section 5 covers two important aspects
of query processing: query resolution (5.1) and distributed
processing (5.2). Section 6 describes implementation of the
system, and section 7 covers experiments using the system.

2. RELATED WORK
Most Internet-protocol-based network applications assume

a set of underlying properties in the network: that there is
an end-to-end path between a node and its peer, and that
the round-trip time is not excessive. Several classes of chal-
lenged networks exist in which these assumptions are vio-
lated. These include sensor networks where communication
must be scheduled to handle changes in node location, or to
conserve node power. Delay Tolerant Network architectures
(DTN) have been proposed [5] to handle communication
within and between challenged networks. Typically, these
involve a message forwarding system that operates above
the physical network layer. A DTN architecture includes
gateways which route messages between regions which might
otherwise be disconnected. Gateways can include routers
carried by vehicles such as commuter buses.

One application of DTN is DakNet [11], which provides
non-realtime Internet connectivity to rural villages in India.
Rural buses are equipped with a mobile access point (MAP)
which uses a 802.11b wireless link to exchange data between
an Internet-connected depot station and kiosks in villages
along the bus route. When the bus comes within range of
the kiosk a “session” occurs of roughly 2–3 minutes duration
during which approximately 20 megabytes of data can be
transferred in either direction.

Wireless sensor networks are increasingly being used for
applications like environmental monitoring [9] and animal
tracking [7]. These networks are typically comprised of small
battery-powered devices that can communicate over short
range but have limited storage and processing ability. When
proximity of nodes allows, ad-hoc networks can be formed in
which data is exchanged. A key problem in these networks is
routing. Usually, the network includes “sink” nodes which
connect to other networks. Many routing strategies exist,
and routing can be improved by using knowledge of node
mobility [8].

In some networks sensor nodes are fixed while in others
they are mobile. Some networks include both fixed and mo-
bile entities. The term “data MULE” refers to a entity that
is able to exchange data between a sensor and an access
points by virtue of its mobility [12]. By including MULEs
as one tier in a sparse network, sensors are required to trans-
mit data over a shorter range, leading to power savings.

Many of these same issues are relevant in mobile-camera
surveillance. Although the nodes (eg. vehicles) are more
capable than most wireless sensor network nodes they are
still constrained relative to the potential demands of the
system.

The advent of the “social web” has seen the development
of web applications like Flickr [2] which allow the sharing
of images collected by users. These become a valuable re-
source when indexed using tags or spatial positions. For
example, Panoramio [4] allows geo-coded photographs to be

D

R

F

P

P = center point
D = view direction
R = view radius
F = field of view

(a) Simple visibility constraint

Observer

Target

Trajectory

Observer

Target

Trajectory

(b) viewOut operator (c) viewIn operator

Figure 1: Interpretation of observer-target con-
straints for view operators.

embedded in applications like Google Maps [3]. In May 2007
Google launched StreetView, a service that allows locations
to be navigated using interactive panoramas. This data is
collected using panoramic cameras mounted on vehicles. At
the time of writing the coverage extends only to portions
of 5 US cities. Even without geo-coding, it is still possi-
ble to combine user-contributed images into scenes. Mi-
crosoft’s PhotoSynth is based on work done at University
of Washington [13] which combines collections of images of
a place into multi-scale 3D models. Camera positions and
pose are estimated from feature-point matching and can be
geo-registered with respect to aerial images or digital eleva-
tion maps.

Applications like StreetView and PhotoSynth can give a
powerful sense of place but lack a temporal dimension, and
so cannot be used to understand events or change. An exten-
sion of the photo-sharing idea is the concept of “cyborglog-
ging” [10], in which wearable cameras (eg. camera phones)
can be used to stream images to an on-line community. This
allows users to build personal narratives in real-time, and to
collaborate in the observation of events. Any analysis or
integration across feeds must be done by users : the system
lacks an ability to navigate images in space or time.

Recent work in creating a framework for mobile surveil-
lance, [6] uses video collected from mobile cameras to syn-
thesise views of areas around transport routes. A “virtual
observer” query allows the user to visualise the scene at
a selected place over time. The system provides visibility
query operators (ie. viewIn, viewOut) which return small
segments of video that match the query constraints. A sim-
ple visibility constraint is a tuple 〈P, R, D, F 〉, where P is a
point in space, R is a visibility radius, D is a view direction,
and F is a field of view. This is depicted in Figure 1(a). A

simple visibility constraint defines an acceptance area and
view range. The area is a circle of radius R centered at P .
The view range is the range of directions between D − F
and D + F .

The two fundamental visibility operators are viewOut and
viewIn: both use simple visibility constraints, but interpret
the constraints differently as shown in Figure 1. In both
cases, the observer is located inside the view area. For the
viewOut operator (b), the view target is generally outside
the defined area, although its location is unknown to the
system. The angular constraint is on the direction from the
observer toward the target. For the viewIn operator (c),
the view target is the center of the defined area, and the
constraint is on the direction from the target to the observer.

Whilst this query framework is useful for visualisation and
querying in mobile camera applications, it does not address
issues of distributed query processing, or storage or data
collection.

3. SENSOR NETWORK
In a sensor network, data may be collected by mobile and

static sensors, and the mobile sensors can be located spa-
tially using sensors such as GPS. Typically, the mobile sen-
sors have limited storage, and limited bandwidth access for
data transfer. Also, in large-scale networks, the static and
mobile sensors are owned by different operators, and thus
the data and infrastructures are geographically separated.
These operating service centres may be aggregated. Thus,
the network is heterogeneous but there is no existing overar-
ching framework across operators and sensors. For example,
mobile video may be collected by different vehicle fleet oper-
ators in a city, whilst local government councils collect static
camera footage. Typically, each of these operators have their
own infrastructure for access, and there is no way in which
this data network can be tapped in a coherent way. To com-
plicate matters, some operators store the video whilst other
do not.

Access of mobile data is a fundamental problem due to
bandwidth restrictions. In a mobile surveillance network
video is collected by mobile cameras which are typically
mounted on vehicles. Each vehicle carries a mobile data
recorder (MDR) with the capacity to store several days of
data under normal operating conditions. When a vehicle re-
turns to its depot, the mobile data recorder is interrogated
via a wireless data link and video can be retrieved. A bus de-
pot services around 100 buses, but they usually all converge
around the same time, outside of “rush hours”. The aver-
age operational time is 12 to 14 hours per day, which leaves
about 10 to 12 hours per day for downloads. A 54Mbps
802.11g wireless link is available but in practice the effective
payload throughput is about 20Mbps. At this rate, even
with 100% utilisation this is only around 90Gb per day, or
about 900Mb per bus. For example, 1 camera operating at
768x288 (2CIF) resolution, 5 frames per second generates
about 200Kb per second, or approximately 8.6Gb data per
day. Given an allocation of 900Mb per bus it is clearly not
possible to retrieve more than about 10% of the generated
data. This figure is obviously flexible (eg. for faster net-
work, more cameras, etc) but it remains that it is usually
not possible or desirable to retrieve and retain all data. We
need a way to control data collection based on user demand.

To summarise, the network is heterogeneous, distributed
across mobile and static platforms and across different oper-

. . .

. . .

. . .

V
id

eo
 +

 G
P

S
 d

at
a

Q
u
er

ie
s

Permanent connections

Temporary connections

HORUS application

Sensors

Application Server

Clients

Depots

. . .S SS S

DD

A

Figure 2: Sensor network consists of three tiers: ap-
plication server (A-Node), depots (D-Nodes) and
sensors (S-Nodes).

ators. The storage is distributed between the mobile sensors
and fixed infrastructures. The communication between de-
pots and mobile sensors is limited both in bandwidth and
reliability. Therefore, when queries are made, the data must
be moved in the network, and retrieved either on-demand
or from existing repositories.

4. SYSTEM ARCHITECTURE
Figure 2, shows an architecture and information flow in

which the sensor network implements a distributed storage
and retrieval system. At the root (level 1) of the tree an
application server (A-node). The application server con-
tains a large store of video and trajectory data for use in
browsing and visualisation. This connects to a number of
remote service depots (level 2, D-nodes) which acquire and
store video and trajectory data. The D-nodes collect infor-
mation from sensor nodes (level 3, S-nodes). Connections
between D- and S-nodes may be permanent (eg. in static
camera surveillance using analog video, or video-over-fiber)
or scheduled (eg. in mobile surveillance). In the latter case,
communication can only occur when the sensor is in proxim-
ity to a wireless access point; normally this happens when
the vehicle returns to its depot. In addition, the mobile
data recorders are powered from the vehicle’s battery so it
is not possible for them to run for more than 1 or 2 hours
while the engine is turned off without impacting on battery
condition. The communication capacity of the D-A link is
variable depending on vendor, geography, etc.

The nature of mobile storage, is that it is limited and
semi-permanent. For example, a bus stores around 80Gb of
data, so the vehicles at each depot have a combined capacity
of approximately 8000Gb. However, data is only retained at
this level of the network for approximately 4 to 6 days before
the storage needs to be reused. Also, connections to these
nodes are infrequent, so this data is not highly available.
Therefore, the system attempts to move as much data as
possible into storage within the service depot itself. This
data then becomes readily available to the application server
through permanent, though possibly relatively slow network
links. Selected data is automatically moved from the depots
to the application server for rapid retrieval by clients.

We now describe the query resolution and the distributed
processing in this architecture.

BarrackSquare

HayStMall

ForrestPlace

CnrWilliamJames
JamesSt

King St
CnrWilliamHay

CnrWellingtonBarrack

Northbridge (50%)City (10%)

Mount Hospital

Figure 3: Example set of queries showing nine vir-
tual observers (circles) and two coverage queries
(rectangular regions). Sample rates are shown.
Street directory image courtesy of Department of
Land Administration, Western Australia.

5. QUERY PROCESSING
In our system, HORUS, queries are defined in a visual

query environment. The user opens a map view and posi-
tions observers at places of interest. The user needs a certain
level of spatio-temporal detail in order to provide context
for placement of queries and to see what kind of views are
likely to result. Initially, this may involve using a “tracking”
query, which shows the closest observation to the mouse al-
lowing the user to “scrub” the map to find places of interest.
When placing observers it is also useful to see what data is
available for different positions and orientations of the cam-
era. Since the requested data may be off-line it is useful
to be able to provide approximate (low resolution) results
until the required data can be retrieved. To support this
interactive browsing we need a level of background “cover-
age” data that is dense in space (position and orientation),
but may be sparse in time. In contrast, a virtual observer
query is sparse in space, but dense in time. So effectively im-
plementing the system requires a mixture of operators that
select data using different sampling criteria:

• Observation operators: high level of detail over a small
spatial area.

• Coverage operators: low level of detail over a large
spatial area.

Figure 3 shows a typical set of queries within the system.
The “point” queries (eg. BarrackSquare, HayStMall) are
virtual observers with radii of about 50m. In these positions
we require a high level of detail; in practice we want all of
the available data at the highest frame rate. The “region”
queries (eg. City, Northbridge) are coverage queries that
specify the requirements of the system for background data.
Sampling rates are shown as a percentage of the full frame
rate of 5fps. For Northbridge, a popular entertainment area,
we require higher level of background coverage: 50 % versus
10% for the City area.

The sensor network is limited in the amount of video that
can be retrieved. The aim of the system is to provide the

best possible level of detail given the constraints of the sen-
sor network. Virtual observer queries are of high value to
the system, but may only require a small part of the over-
all network bandwidth. Coverage queries use the remaining
bandwidth in a targeted way to provide background data
for browsing.

Two important aspects of the problem are:

• Query Resolution. This is the process of determining
the segments of mobile-camera video that correspond
to each query in the system. This involves mapping
spatial queries and trajectory data to temporal video-
segment descriptions. This is described in section 5.1.

• Distributed Processing. This describes how query res-
olution is performed in a distributed sensor network
and how the resulting video is made available to the
client. This is described in section 5.2.

5.1 Query Resolution
The previous work [6] describes a model for query and vi-

sualisation of mobile surveillance data. However, it was lim-
ited to single camera, fixed sampling rate visibility queries.
To implement the distributed queries, these operators need
to be generalised to include multiple camera configurations,
sampling rate constraints and coverage operators.

Formally, let V be a vehicle, let cameras(V) be the set of
its cameras, and trajectory(V) be its trajectory. Each cam-
era C has an orientation orient(C) relative to the heading
of its vehicle vehicle(C) = V . Each camera C also defines
a video sequence vid(C) = [〈I0, t0〉 , ..., 〈IN−1, tN−1〉] of N
observations. Each observation 〈I, t〉 defines an image I and
sample time t. Using vid(C), we define a function that maps
a time to an observation : Let vidt(C, t) be the observation
〈I, t′〉 ∈ vid(C) such that t′ is closest to t over all observa-
tions.

A camera track observation is a tuple 〈C, t〉, where C is
a camera, and t is a time. A camera track segment is a tu-
ple 〈C, t1, t2, A〉 where t1 and t2 are times (t1 ≤ t2), and A
is a sampling rate. Camera track observations and camera
track segments are returned by geometric queries. Associ-
ated with each camera track observation is a unique obser-
vation (a time-stamped image) vidt(C, t). Associated with
each camera track segment is an observation sequence (a
time-stamped video segment) [vidt(C, t1), ..., vidt(C, t2)].

In general, a query Q is a tuple 〈op, O, A〉, where op is
an operator, O is set of corresponding constraints, and A is
a sampling rate. Each operator defines a mapping between
a camera C and a set of camera track segments. For ob-
server queries op is a visibility operator, and O is a visibility
constraint (described in 2). Examples of operators are:

Definition 1 (viewOut : View from a place). We de-
fine function viewOut(C, O, A) to be the set of camera track
segments 〈C, t1, t2, A〉 where V = vehicle(C), O is a sim-
ple visibility constraint 〈P, R, D, F 〉, and trajectory(V, t) is
entirely contained within the circle of radius R centered at P ,
and the heading at trajectory(V, t) is between D−orient(C)−
F and D − orient(C) + F for t1 ≤ t ≤ t2.

For coverage queries op is simply the spatial containment
operator, and O is a spatial region, generally described by a
polygonal boundary.

(C) 2 segments

a

b

a

b

b

b

a

a

a

a
a

a

b

b

a

(A) 2 segments (B) 1 segment (D) 3 segments

Figure 4: Example cases for merge operation. The
bottom row shows the result of merging segment
rates in the first and second rows. The x-axis rep-
resents time, and the y-axis shows sampling rate.

Definition 2 (cover : Coverage constraint). We de-
fine the function cover(C, O, A) to be the set of camera track
segments 〈C, t1, t2, A〉 where V = vehicle(C), O is a spatial
region, and trajectory(V, t) is entirely contained within O
for t1 ≤ t ≤ t2.

Once the trajectory trajectory(V) of a vehicle is known,
it is possible to resolve the video requirements for each of the
attached cameras. For each query Q = 〈op, O, A〉, and each
camera C ∈ cameras(V) the system evaluates op(C, O, A).
The result is a sequence of camera track segments for each
combination C ×Q of camera and query. By appropriately
factoring the internal state of each operator this computa-
tion is done using a single pass through the trajectory data.
The system then merges the output for multiple queries to
give a single sequence of camera track segments for each
camera. This is done in a way that retains the maximum
required sampling rate in the event of any overlaps. Some
cases are shown in Figure 4. In case (A) two disjoint seg-
ments merge as disjoint. Where adjacent segments have
equal value (B), the result is one merged segment. Cases
(C) and (D) show some examples resulting from overlap-
ping inputs; the first results in two segments, the second
results in three segments. If O = {O1, ..., ON} is a set of N
track segment sets, we define the function merge(O) to be
the set of track segments forming the maximal rate over the
input segments. Where O contains segments from different
cameras, the cameras are merged independently.

Returning to the problem statement, given a set Q of
queries we compute:

resolveCamera(Q, c) = merge({op(c, O, A)| 〈op, O, A〉 ∈ Q})

which for any camera c is the result of merging the output
of all queries in Q for that camera. This defines the time
and sampling rate requirements for the video data that must
be retrieved for camera C. Similarly, we define

resolveQuery(C, q) =

merge({op(c, O, A)| 〈op, O, A〉 = q ∧ c ∈ C}

which for any query q is the result of merging the output of
all cameras in C for that query. For any observation query,
this defines that set of camera track segments that match the
query.

The resolveCamera and resolveQuery functions are used
in different parts of the system (see section 7.1 for exam-
ples). resolveQuery is done at A-Nodes during visualisa-
tion to collect the output of particular observer queries.
resolveCamera is generally run at D- or S-Nodes to de-
termine what video must be moved into the system from
sensors. This approach allows the system to minimise the
amount of data to be retrieved from each vehicle, but to do
this in a flexible, decentralised way that depends on specific
user queries (observation queries) as well as general rules to
anticipate demand (coverage queries).

5.2 Distributed Processing
As described in section 3, there is sufficient network band-

width between D- and S-nodes to retrieve about 10% of the
generated video. The system aims to make best use of avail-
able bandwidth to return requested video to the client.

Formally, we model the network as a graph. Let N =
A ∪ D ∪ S be the set of nodes, where A, D, and S are the
sets of A-, D- and S-nodes respectively. Associated with
each node n ∈ N is a set of resident video corresponding to
camera track segments res(n) and a set traj(n) of vehicle
trajectories. A connection e ∈ E between nodes a and b
is represented as a tuple 〈a, b, f〉, where f(t) is a connec-
tivity function that express the connection bandwidth as a
function of time.

Queries in the system originate from A-nodes and move
down the tree. Trajectory data moves up the tree, at low
cost because the volume is relatively small (1Mb per sensor
per day). Video data moves up the tree, but the amount
of data that can be moved is constrained by the bandwidth
between nodes.

Depending on the state of the system, there are several
possible relationships between a camera C and a query q.
We say that q is resolvable with respect to C at node n if
the required trajectory data is available at node n:

trajectory(vehicle(C)) ∈ traj(n)

We say that q is materialised with respect to C if q is re-
solvable and the result is resident at node n:

resolveQuery(C, q) ⊂ res(n)

The main possibilities are therefore:

• A query unresolvable at n if the trajectory data has
not moved up the tree to node n.

• A query is resolvable but unmaterialised if the trajec-
tory data is available, but the video data is not avail-
able.

• A query is materialised if both trajectory and video
data is available. A query may be partially materi-
alised if some video data is available but some is not
available. This may occur if some coverage data exists
but at a lower than required sampling rate, or if data
is available at the correct rate, but for only part of the
time range of a query.

Query resolution (resolveQuery, resolveCamera) can oc-
cur at any level of the tree at which the required trajectory
data exists. For interactive queries (using resolveQuery)
such as tracking, browsing, and placement of new observers
we usually require that the queries be resolved over all cam-
eras and that the results be rapidly materialised, so these

queries execute at the top of the tree and return small amounts
of data, either directly from A-node storage, or by pulling
data from storage at the relevant D-node. For non-interactive
data-gathering queries such as permanent virtual observers
and coverage queries, resolution uses resolveCamera at the
lower levels, either at S-nodes, or at D-nodes. These queries
generally need to be resolved but do not need to be rapidly
materialised, and are processed with respect to the cameras
on a particular vehicle when new trajectory data becomes
available. Their role is to pull data from sensors into the
network.

Query materialisation can occur at differing degrees at
different levels of the tree. Most of the video data exists
at the bottom of the tree (ie. at D-nodes). Due to band-
width constraints on the A-D-node links, only a portion of
the available data will be resident at A-nodes. Queries are
generally propagated down the tree from A-nodes until they
can be serviced.

While the model allows that queries be executed at S-
nodes, the current implementation is constrained by the type
of processing that can be done on the commercially-available
mobile data recorders. In practice, data-gathering queries
are resolved at D-nodes whenever buses return to their de-
pot at the end of the day. Once the GPS data has been
downloaded, the queries are resolved and the required cam-
era track segments are requested through the vendor’s exist-
ing fleet-management API. The combined requirements over
all vehicles can be analysed to provide a prioritised schedule
of what video needs to be retrieved and stored. High-rate
video segments (from observer queries) are relatively short in
duration and are easily serviced by the system. The remain-
ing bandwidth is dedicated to retrieving coverage data for
browsing. This is less critical and the associated sampling
rates can be adjusted to fit the available network capacity.

6. IMPLEMENTATION
HORUS is implemented in Java, and consists of several

parts: a storage manager, a query processor, and visual en-
vironment (described in [6]).

The storage manager implements storage schemes for im-
age and trajectory data. A trajectory is stored in a single
file as a stream of binary records ordered by time. This
allows all or part of the trajectory to be processed by se-
quentially reading a section of the file. Video is stored in a
container file as “blobs” of raw JPEG images. A region of
the container file is an index with the time-stamp, position
and size of each blob. Both trajectory and image contain-
ers are temporally sorted and accessed using either time (by
binary-search of the file or index) or ordinal position.

The query processor implements the operators described
in 5.1, including viewIn, viewOut and cover. The out-
puts from multiple queries are merged to produce compact
camera track segment lists. These are used in two ways.
Firstly camera track segments are used to build time-lines
[6] for navigating the video data in response to interactive
queries. Secondly camera track segments define segments of
video that are to be imported into the system for standing
queries.

Figure 5 shows how HORUS currently integrates with ex-
isting system at a bus operator’s depot. Each bus contains
a recorder which stores GPS and video data in a propri-
etary file format (DVSS [1]). A fleet management system
manages the retrieval of data from the bus fleet. A stand-

FLEET

Query Processor VG

VG 4

1

2

3

5

Fleet Manager Bus

Repository

G

Repository

GPS

Video

Queries

V

Q

VG

DEPOTHORUS

Figure 5: HORUS implementation at bus depot.

ing request is placed in the system for all new GPS data.
As buses come on-line GPS data is retrieved into the depot
repository (step 1). A HORUS process monitors the depot
repository for new data and imports this into its own repos-
itory (step 2). All new trajectory data is then processed
against all standing queries to produce a stream of camera
track segments which is submitted as a batch of requests
to the fleet management system (step 3). Later, the im-
age data is retrieved to the depot repository (step 4) and
is then imported into the HORUS repository (step 5). The
import process may filter out information that is present in
the depot repository (eg. to select particular channels, or
resample data). The HORUS repository is independent of
vendor-specific data formats and protocols, although it does
use these in the process of gathering data.

7. EXPERIMENTS AND DISCUSSION
We evaluated the design of HORUS using a number of

data sets.
First, we had access to the live output for about 20 buses

at a depot via the system shown in Figure 5. These buses
form the Central Area Transit (CAT) service, a free high-
frequency service in the Perth central business district. This
data (named “CATLIVE”) was collected on-line with a la-
tency of about 1 day, but was restricted as detailed below.

The second data set (named “CATVID”) consists of 1.2TB
of video and trajectory data, and represents the output for
the 20 buses over about 4 days. This was collected directly
from the bus recorders. In addition, in a third data set
(“CATGPS”), we used historical GPS data for these same
buses lasting up to 9 months into the past. Only the last
few days of the GPS tracks overlaps available video.

The CATGPS data set was used to evaluate some aspects
of the design that could not be tested because of limitations
in the existing proprietary depot infrastructure. In partic-
ular, the system lacked an efficient scheduler so downloads
were limited to time-slots of fixed length. It was not possible
to “wake up” buses at predetermined times so the time-
window available for downloads was unreasonably small.
Also, the system did not allow selected video channels to be
extracted, and it was not possible to temporally resample
the video. These factors limited the volume of video that
could be retrieved into the CATLIVE set. Therefore, to
study network throughput of the system, we used the CAT-

C
A

M
E

R
A

S

OPERATORS

DATA GATHERING

VISUALISATION

Combine multiple operators to compute

the output of individual cameras

Combine multiple cameras to compute

the output of individual operatorsre
so

lv
eQ

u
er

y

resolveCamera

Figure 6: Query resolution merges outputs of
camera-operators in different ways depending on ap-
plication.

 6 8 10 12 14 16 18 20 22 24

hour of day

JamesSt

CAT06

CAT07

CAT10

CAT20

Figure 7: Output for one observation operator (bot-
tom plot) is made up of the contributions of four
mobile cameras (top plots).

GPS data to “simulate” the effects of variable bandwidths
and sampling rates.

7.1 Query Resolution
This section demonstrates the query resolution process

using the 20 CAT buses accessible through the bus depot.
Additionally, the coverage of the system was validated ex-
tensively on the CATVID dataset, but these results are not
presented here due to space restrictions. Instead, we present
the results using the CATLIVE data with the configuration
depicted in Figure 5 and using the queries shown in Figure 3.
We demonstrate two applications of the resolution process
within HORUS : the computation of results for individual
observation queries, and the computation of results for indi-
vidual cameras. As shown in Figure 6 we can consider each
combination of camera and query C × Q to be elements in
a matrix of camera track-segment results which are merged
in different ways. For visualisation, resolveQuery merges
multiple cameras to derive the output of individual opera-
tors. For data gathering, resolveCamera merges multiple
operators to derive the output of individual cameras.

7.1.1 Resolution of Individual Queries (resolveQuery)
Function resolveQuery computes the results of individual

operators (eg. an observer query) by combining the output
of multiple cameras over time. This is used by the visuali-

Figure 8: Observations of a moving object (yellow
car) gathered from mobile cameras.

sation system to generate views of a place. The process is
illustrated in Figure 7. Here, four different vehicle cameras
contribute observations of a place over the course of a day.
The horizontal axis shows time of day, and the vertical axis
shows sampling rate. Each “spike” in the plot corresponds
to a camera track segment of high sampling rate. The bot-
tom trace (“James St”) shows the operator output which is
a combination of the outputs of the individual cameras.

Figure 9 shows the materialised output of this query at
different times of the day. The images depict a day in the life
of a Northbridge restaurant, showing changes in appearance
between morning and evening (see the caption for details).

The previous output was generated using a viewOut op-
erator, which find views from a point in space. When the
location of an object of interest is known we can use the
viewIn operator to find observations of that object from
different perspectives (see [6] for details). This applies to
both stationary objects and to moving objects whose tra-
jectory is known.

In this experiment we drove a distinctive yellow car around
the city while carrying a hand-held GPS unit. We placed a
virtual observer on the vehicle by linking the location of a
viewIn query to its GPS trajectory. The result was a set
of roughly 50 observations of the vehicle over a period of a
few hours collected from the bus fleet. Figure 8 shows some
examples. This technique does not deal with problems like
occlusion, but gives a workable set of candidates that can
be easily filtered interactively.

7.1.2 Resolution of Individual Cameras (resolveCamera)
A second application of query resolution is to drive the

collection of video data from the sensor network, that is,
the data gathering process. Here, function resolveCamera
computes the output of an individual camera by merging
the contributions of multiple operators.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 9: Time-lapse view showing a day in the
life of a Northbridge restaurant. Early morning:
the streets are deserted (a). Later (b), tables are
stacked, waiting to be laid out for alfresco dining.
Initially, part of the dining area is blocked by a
parked car (c). Later, the seating is ready, and
waiters are setting the tables (d). Patrons begin
to arrive (e), and stay late into the evening (f–g).

 0

 20

 40

 60

 80

 100

 6 8 10 12 14 16 18 20 22 24

s
a
m

p
lin

g
 r

a
te

 (
%

 o
f
fu

ll
fr

a
m

e
 r

a
te

)

time of day (hours)

CAT06

CAT06

BarrackSquare

MountHospital

CnrWellingtonBarrack

CnrWilliamHay

CnrWilliamJames

HayStMall

Northbridge

City

Full Day 2 hour segment (12:00 to 14:00)

Figure 10: Video requirements for one camera, CAT06, traversing the “Blue CAT” route on 19/1/2007.
These results are for the queries shown in Figure 3 which includes seven virtual observers and two coverage
regions. The left plot shows the requirements over as 24 hour period. The right plot shows detail over a two
hour period, illustrating contribution of individual operators (top traces) to the final result (bottom trace).

This is demonstrated in Figure 10, which shows a por-
tion of the requirements for a bus on the “Blue CAT” route.
The bus traverses a circuit 21 times over the period of a
day. This circuit is covered by nine virtual observers and
two coverage queries (see Figure 3). The background rate
is defined by coverage queries: the City query is 10%, and
the Northbridge query is 50%. The horizontal axis shows
the time of day. The vertical axis shows the requested video
sampling rate as a percentage of the full frame rate. The
left plot shows sampling rate over a 24 hour period. The
right plot shows detail over a two hour period, and indicates
how resolveCamera computes the resultant signal (bottom
trace) by merging the set of outputs for specific queries (top
traces). The observer queries are generally disjoint in time,
being based on non-overlapping target regions. The cov-
erage queries overlap the observer queries as well as other
coverage queries. Each time the bus passes through a virtual
observer a short segment of high-resolution video is required,
resulting in a “spike” in the graph. The “step” patterns
around 12:30 and 13:30 correspond to a transition between
coverage operators where the background rate changes be-
tween 10% (City) and 50% (Northbridge).

7.2 Network Simulation
HORUS relies on network connections to propagate video

upstream from S- to D- and A-Nodes. Data that is closer to
the A-Nodes can be retrieved with lower latency, so we try
to maximise the amount of data moved up the network tree.
Queries are used to prioritise which data is retrieved into the
system, but the system is ultimately limited by available net-
work bandwidth. To explore these factors, we simulated the
performance of the system on real data (CATGPS dataset)
with links of varying capacity.

The simulation is determined by a number of parameters
(default values in parentheses). We assume that each day a
time window tdown (10 hours) is available for downloading
data from the sensors, and that the sensors can be scheduled
to be on-line at the relevant time during this window. The
available bandwidth for downloads is bwdown (20 Mbit/S).

Based on 2CIF video at 5fps stored as JPEG, the data rate
for one camera (videoRate) is approximately 200Kbytes per
second, or around 1.6Mbits per second. The amount of video
that can be downloaded per day from S- to D-Node is there-
fore tdown × bwdown/videoRate or approximately 125 hours
per day at full frame-rate. Similarly, tup (24 hours) and bwup

(1 Mbit/s) define the upload link capacity. These values are
typical of an ADSL-2 link, which can handle approximately
15 hours video per day.

The simulation uses GPS and query data to derive a list
of camera track segments to be downloaded each day from
S-Node Si. These are added to a pendingdown list which
is prioritised by sorting by sample-rate and then start-time.
The available download time is distributed amongst these
segments, in order of priority. The downloaded segments
are moved from the pending list to two lists: a res(D) list
of resident segments at the D-Node, and a pendingup list
of segments waiting to be uploaded. The same process is
repeated for the up-link: pending uploads are prioritised
and transferred to a list res(A) according to link capacity.

Figure 11 shows simulation results for 1Mbit/s (left) and
250kbit/s (right) links between A- and D-Nodes; other pa-
rameters are the values described above. The result includes
three plots. The top plot shows the number of vehicles on-
line (varies from 5 to 18), and the amount of video offloaded
from the sensors. The times are hours of full-frame-rate
equivalent video, so 1 hour at 10% sampling rate is treated
as 6 minutes. The test data spans a period of about 300
days during which the buses were being fitted with new
data recorders. Therefore the number of vehicles on-line
increases over time. Note that the amount of video gener-
ated increases over time but also fluctuates on a 7-day cycle
because the fleet is less active on weekends. Given these
parameters, the system is able to retrieve all data from S-
to D-Nodes using only about 20% of the network capacity.

The middle plot shows the amount of video (in hours)
resident at D-nodes for both observation queries (bottom
trace) and total over all queries (observation + coverage,
upper trace). The middle trace shows the total video resi-

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

Delivered %
 L1 %
 L2 %
 L3 %

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500
Video (hours)

Obs / D-Node
Total / D-Node
Total / A-Node

 0
 5

 10
 15
 20
 25
 30
 35

Vehicles online
Video (hours)

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

Delivered %
 L1 %
 L2 %
 L3 %

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500
Video (hours)

Obs / D-Node
Total / D-Node
Total / A-Node

 0
 5

 10
 15
 20
 25
 30
 35

Vehicles online
Video (hours)

Figure 11: Network simulation results for 1Mbit/S (left) and 250Kbit/s up-links between D- and A-Nodes.

dent at A-Nodes. Notice that the “total” plot diverges as the
system sheds coverage data in favour of observation data.

The bottom plot shows the percentage of the total avail-
able video that is delivered upstream from D-Nodes to A-
Nodes. This is broken down by sampling-rate class: L1 is the
highest priority level (observation queries). L2 is the “50%
rate” coverage query (“Northbridge” on the map), and L3
is the “10% rate” coverage query (“City” on the map).

In the 1Mbit/s scenario, as the load on the system in-
creases, the system drops the amount of coverage (L3) data
to a level of about 70%, but still retains L1 and L2 data.
In the 250kbit/s scenario the system is able to transfer less
than 4 hours of up to 30 hours video that is generated per
day. Initially (around day 50) the system begins dropping
L3 coverage data, and later (day 130) starts to drop L2 cov-
erage data. Eventually, the system is able to transfer only
6% of the L3 data, and 21% of the L2 data, but it still retains
97% of the L1 observation data.

Although the levels of coverage data vary, in both cases
the system manages to successfully transmit most of the
observation data upstream from D-node to A-node storage.

7.3 Discussion
Results in this section demonstrate the resolution of indi-

vidual cameras and individual queries using data from a live
mobile camera network. Simulations using a 9-month his-
torical data set show how the system responds under various
network conditions. In challenged environments, the system
continues to deliver high-priority observation data by adap-
tively discarding the lower-priority coverage data. In this
scenario, the affected coverage data would be retained at
the D-Node, but would be accessed with greater latency in
an interactive scenario. Importantly, the data is retrieved
from the sensors before the associated storage is reclaimed
by the mobile data recorders.

We found some limitations in the proprietary depot in-
frastructure but these are expected to be removed by the
vendors in the near future, allowing a full-scale testing of
the proposed approach. From the user’s point of view, the
response time of the system to interactive queries is impor-
tant. This depends on the location of the required data in
the network, and is difficult to characterise without refer-
ence to a particular set of new and existing queries. This is
a subject for future work.

8. CONCLUSION
In this paper we have presented a way in which we can

solve the core issues in mobile surveillance: distributed data
on mobile and static platforms, bandwidth-limited and sched-
uled connections, and complex spatio-temporal queries. We
have demonstrated the system on a real bus and depot in-
frastructure and shown the usefulness of this solution in
tackling the challenging problems in this domain. In ad-
dition, we simulate varying infrastructure conditions using
a historic real dataset and demonstrate the robustness of
our system to handle these conditions.

9. REFERENCES
[1] Digital Technology International. Web site visited April

2006. http://www.dti.com.au/.
[2] Flickr. http://www.flickr.com/.
[3] Google maps. http://maps.google.com/.
[4] Panoramio. http://www.panoramio.com/.
[5] K. Fall. A delay tolerant network architecture for

challenged internets. In ACM SIGCOMM 2003, 25-29
August, Karlsruhe, Germany, 2003.

[6] Stewart Greenhill and Svetha Venkatesh. Virtual observers
in a mobile surveillance system. In ACM Multimedia 2006,
23-27 October, Santa Barbara, USA, 2006.

[7] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. Peh, and
D. Rubenstein. Energy-efficient computing for wildlife
tracking: Design tradeoffs and early experiences with
zebranet. In ASPLOS, San Jose, CA, October 2002.

[8] J. Leguay, T. Friedman, and V. Conan. Evaluating
mobility pattern space routing, 2006.

[9] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and
J. Anderson. Wireless sensor networks for habitat
monitoring. In WSNA’02, Atlanta, Georgia, 2002.

[10] S Mann, J Fung, and Raymond Lo. Cyborglogging with
camera phones : Steps toward equiveillance. In ACM
Multimedia 2006, 23-27 October, Santa Barbara, USA,
2006.

[11] A Pentland, R Fletcher, and A Hasson. DakNet:
Rethinking connectivity in developing nations. IEEE
Computer, pages 78 – 83, January 2004.

[12] R. Shah, S. Roy, S. Jain, and W. Brunette. Data MULEs:
Modeling a three-tier architecture for sparse sensor
networks. In IEEE SNPA Workshop, 2003.

[13] N Snavely, S M Seitz, and R Szeliski. Photo tourism:
Exploring photo collections in 3d. ACM Transactions on
Graphics (SIGGRAPH Proceedings), 25(3):835–846, 2006.

http://www.dti.com.au/
http://www.flickr.com/
http://maps.google.com/
http://www.panoramio.com/

	Introduction
	Related Work
	Sensor Network
	System Architecture
	Query Processing
	Query Resolution
	Distributed Processing

	Implementation
	Experiments and Discussion
	Query Resolution
	Resolution of Individual Queries (resolveQuery)
	Resolution of Individual Cameras (resolveCamera)

	Network Simulation
	Discussion

	Conclusion
	References

