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Abstract. A method is developed to estimate the stress at the surface in a portable wind tunnel
for wind erosion studies. The boundary layer height and the pressure gradient are used in a simple
expression from the Kármán Integral Momentum Equation. Values of friction velocity u∗ are within
10% of experimental values obtained through correlation techniques, including measurements of dif-
ferential pressures with the Murdoch Turbulence Probe MTP and the X-wire, hot-wire anemometer
XWA. Wind velocity and stress profiles reveal logarithmic trends and a ‘constant stress layer’ near
the surface in the DAWA portable wind tunnel. Realignment of the statistics with the mean wind is
essential.
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Abbreviations: DAWA – Department of Agriculture, Western Australia–formerly, West Australian
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1. Introduction

A primary consideration in wind erosion studies is the measurement of the force
of the wind on the surface. The wind must comply with the surface and, in shear,
transfers momentum to the surface through turbulent eddies. The momentum trans-
fer is exhibited as a mean stress, both in the wind and on the surface, the ‘surface
shear stress’ τo. This stress moves particles and promotes erosion. An aim of the
present paper and the paper of Findlater et al. [1] is a robust characterisation of
surface shear stress, particularly for wind erosion studies. Ultimately, requirements
for measurements in wind tunnels (in the field) and in the atmosphere (in the field)
should evolve. Scaling considerations should allow measurements in prescribed
wind environments, as produced by an agricultural wind tunnel, to be used in real,
atmospheric erosion events over real and varying surfaces.
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Figure 1. Schematic of a boundary layer flow. h, δ and R are the heights of the roughness
elements, the boundary layer and the reference height in the freestream, respectively.

Techniques are available to estimate the surface stress τo in both the atmosphere
and low speed wind tunnels: A drag plate measures τo directly. Pressure taps on
roughness elements can give an indirect measurement (Antonia and Luxton [2, 3]).
Cross-wire anemometers (XWA) can measure the Reynolds stress. The slope of the
wind speed profile, the friction velocity u∗ (m/s), may be an estimate of the stress.

These techniques have limitations: Considerable errors arise with drag plates
from the turning moment when roughness elements are tall. Reynolds stress meas-
urements assume that the fluid stress equals τo close to the surface. Determination
of u∗ from a velocity profile assumes that the flow is steady, in equilibrium and
obeys the law of the wall. This may not be the case, particularly when fetches are
short or there are changes in roughness. An alternative to these indirect methods
but not commonly used, considers the Kármán Integral Momentum Equation.

Proposed by von Kármán [4], brief accounts of its potential are given in texts
(Sutton [5]; Townsend [6]; Daily and Harleman [7]). It was successfully used by
Marshall [8] to validate the use of drag plates in a wind tunnel study of roughness
element geometry and spacing. The technique’s principle advantages are: (1) it is
conceptually sound; and (2) it can allow for non-steady and non-equilibrium flow.

This paper briefly rederives a general form of the Kármán Integral Momentum
Equation, including error terms. The method for calculating τo is validated exper-
imentally using correlation techniques with both the Murdoch Turbulence Probe
(MTP) and the cross-wire anemometer (XWA).

The scene is presented in Figure 1; the streamwise wind u is plotted against
the logarithm of the height z. The roughness elements on the surface have notional
height h and scale the flow near the surface. Most variation in the wind occurs
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within the boundary layer δ. The reference height R defines a central or freestream
wind that varys little with height. The inner layer height is roughly 1

10 · δ, a region
over which a logarithmic profile, ‘the law of the wall’, may apply. Close to δ an
alternate logarithmic form, ‘the law of the wake’, may apply. Logarithmic forms
may make up the entire velocity profile (see Bird et al. [9], p. 164). Nevertheless,
Figure 1 is purposely presented so as not to suggest straight lines but a generalised
profile; the Kármán derivation is not dependent on the presence or absence of
straight lines or logarithmic features.

The following is a succinct derivation of the Karman Integral Momentum Equa-
tion (Equation (8)). In equilibrium, steady flow conditions this becomes nearly
trivial (Equation (9)). The presentation, however, allows an estimate of the mag-
nitude of the error in non-equilibrium flow conditions (Equation (10)). The ap-
proach is independent of the averaging technique or turbulence effects but this very
brief derivation is for a turbulent boundary with all terms averaged appropriately in
time – but the equations include no overbars on the dependent symbols. The flow
is two-dimensional with a horizontal pressure gradient.

The variation of horizontal pressure gradient in the vertical is neglected. This
is a classic, working assumption of most boundary layer models (see, for example,
Schlichting and Gersten [10], Equation (6.9), p. 148). The boundary layer is con-
sidered a perturbation of the main flow near the boundary; the horizontal pressure
gradient is manifest in the main flow and the pressure outside of the boundary layer
is ‘impressed’ on the boundary layer.

2. The Momentum Integral Method

Attention is focused on the boundary layer, of height δ (see Schlichting and Gersten
[10], p. 30). The derivation is a composite of the approaches of Townsend, Mar-
shall, Daily and Harleman, and Sutton. The objective is a simple, working form of
the Kármán’s Integral Momentum Equation from which the surface stress τo may
be obtained, and an estimate of the error. Consider the time-averaged, streamwise
Navier–Stokes Equation for two-dimensional flow,

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= − 1

ρ

∂p

∂x
+ 1

ρ

∂τ

∂z
, (1)

where the normal stress is absorbed in p; the turbulence is isotropic or small in
intensity (Carminati et al. [11]). The equation is otherwise valid for either laminar
or turbulent flow of a fluid of constant density ρ. However, with the dominance of
turbulence in the atmosphere and our wind tunnel, we note that the shear stress τ

is logically treated as the time averaged Reynold’s stress,

τ = −ρu
′
w

′ = ρu2
∗, (2)

the stress in the fluid directed along the main flow on a plane perpendicular to the
vertical. Note that this generalised definition for u∗ only predicts τo under restricted
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conditions; in steady and equilibrium flow, close to the ground, within a logarithmic
or constant stress layer.

For a steady state (1) becomes

∂(u2)

∂x
+ ∂(uw)

∂z
= − 1

ρ

∂p

∂x
+ 1

ρ

∂τ

∂z
(3)

with the use of the chain rule and the continuity equation,

∂u

∂x
+ ∂w

∂z
= 0. (4)

Integrate the entire Equation (3) over δ.

∫ δ

o

∂(u2)

∂x
dz +

∫ δ

o

∂(uw)

∂z
dz = − 1

ρ

∫ δ

o

∂p

∂x
dz + 1

ρ

∫ δ

o

∂τ

∂z
dz. (5)

This is the basic equation of the integral method; all the terms can be simplified.
Provided u2 is a well-behaved function, the operations of integration and differ-
entiation can be interchanged1 in the first term. The second term is simply the
product uw evaluated between the two limits and uowo must be zero at the wall.
The pressure gradient ∂p

∂x
is assumed not to be a function of z so the term becomes

simply the gradient multiplied by δ. The last term is −τo/ρ since τ must be close
to zero near the main stream. Hence we have

∂

∂x

∫ δ

o

u2dz − u2
δ

∂δ

∂x
+ uδwδ = − δ

ρ

∂p

∂x
− τo

ρ
. (6)

Now, from (4), knowing wo = 0

wδ = −
∫ δ

o

∂u

∂x
dz = − ∂

∂x

∫ δ

o

udz + uδ

∂δ

∂x
. (7)

The steady Boundary Integral Equation is therefore

τo

ρ
= − δ

ρ

∂p

∂x
+ uδ

∂

∂x

∫ δ

o

udz − ∂

∂x

∫ δ

o

u2dz. (8)

This equation suits the present purposes, and allows an estimate of error. Clearly,
if the profile is unchanging or ‘in equilibrium’

τo

ρ
∼= − δ

ρ

∂p

∂x
(9)

an equation easily obtained2 from (1) and expected in channels in equilibrium
flow (see Tennekes and Lumley [12], Equation (5.2.5)). The advantage with this
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Figure 2. Wind tunnel design of agriculture Western Australia.

approach, using Equation (8), is that the effect of non-equilibrium flow can be
estimated.

The conditions imposed are:
(1) Two-dimensional flow with small or isotropic turbulence
(2) Steady, well-behaved flow and
(3) An equilibrium profile.
This simple result (9) states that the surface stress τo is equal to the product of the
boundary height and the pressure gradient.

3. Method and Instrumentation

Estimates of the surface stress from the Kármán expression (9) were compared
with XWA measurements and also measurements from the Murdoch Turbulence
Probe (MTP) (see Section 5). Comparisons in terms of u∗ values are in Figure 7.
The boundary layer height δ in (9) was determined from abrupt changes in the
wind speed profile, as well as profiles of the integral length scale �. Antonia and
Luxton [2, 3] suggest that the height of the internal boundary layer resulting from a
change in surface roughness can be defined by the intersection of the profiles above
and below a knee, with the profile plotted as a function of z (see Figure 4). The
pressure gradient ∂p

∂x
was measured using two pressure taps flush with the ceiling

of the tunnel 3.08 m apart; the pressure difference was measured with the MTP by
removing the head and using tubing.

4. The DAWA Tunnel

The portable wind tunnel developed for wind erosion research by the Department
of Agriculture, Western Australia (DAWA), Figure 2, was modified from that used
by Findlater et al. [13], retaining its tent-shaped design. It is driven by a single
stage 1.2 m axial fan and a diesel engine, mounted on a trailer. The flow from the
fan passes through a honeycomb straightener of PVC tubing 56 mm in diameter,
130 mm long. From there, the flow is diverted down to ground level through a short
transition partitioned into 4 sections with internal vanes of equal cross sectional
area (designed by Brancatisano and Trinh [14]). The flow then passes through
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Figure 3. Turbulence Probe used to measure the velocity components, Reynolds stresses,
integral length scale and turbulence intensity.

a second honeycomb composed of drinking straws into a 7.1 m horizontal duct.
About 1 m further along a 40 mm high tripping fence hastens the development
of equilibrium flow. The fence is located midway on a 2 m false floor to prevent
scouring. The working section has a total length of 5.1 m and an area for flow of
about 1 m2; the tent-shape maximises the exposure of bare ground in the working
section.

Measurements are reported over a ‘standard’ surface constructed of cylinders
(see Findlater et al. [1], and Raupach et al. [15], surface E), and a ‘smooth’ bitu-
men surface. Velocity profiles were measured with a rake of pitot and static tubes
coupled to a multi-tube inclined manometer (Findlater et al. [1]). Measurements
of turbulence, Reynolds stresses and integral scales were made using correlation
techniques, taking advantage of Fourier Transform Techniques with the Murdoch
Turbulence Probe (Figure 3). Occasional companion measurements were made
with a XWA.

During erosion studies the flow is controlled by engine speed. The speed is ini-
tially 800 rpm, below the threshold for erosion. Each minute the speed is increased
by 200 rpm up to 2200 rpm. In the present work the engine speed was held constant
until the measurements were completed.

5. Murdoch Turbulence Probe MTP

The MTP (Figure 3) was developed3 at Murdoch University for the National Soil
Conservation Programme and the Land and Water Resources, Research and Devel-
opment Corporation (see Smith [16]; Scott et al. [17]). The Probe is held rigid and
level on a heavy steel plate aligned with the longitudinal axis of the wind tunnel.
The pitot-static head is a 15 mm diameter truncated cone of a CETIAT design; 6
pressure ports of 2 to 3 mm sense differential pressures that are converted into the
three components of velocity. (See Findlater et al. [1], p. 11, Smith [16] or Findlater
[18], for details.)

The data are processed in nearly real time. The stresses and spectra are based
on correlations between the instantaneous streamwise, lateral and vertical wind
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Table I. Correlation (r) between Probe with a five port
spherical head, and cross-wire measurements Smith [16])

Mean velocity 0.996

Reynolds stress 0.962

Integral time scale 0.920

Integral length scale 0.710

speeds. Fourier transform techniques are used to correct for attenuation and phase
lags; the correlations and average winds are calculated and a matrix transformation
aligns the statistics with the mean wind; turbulence spectra and integral scales are
calculated. The Integral Length Scale � is defined for the streamwise wind, using
time averaging and Taylor’s hypothesis (see Findlater et al. [1], p. 10). A pitot-
static tube of CETIAT design mounted alongside the probe acts as a reference (see
Figure 3b, right side).

An early design of the MTP (with a spherical head) was calibrated in a laminar
flow tunnel and tested against a cross-wire in the DAWA tunnel by Smith [16]. The
correlations (r) between the probe and the hot wire over the ‘standard’ test surface
are presented in Table I. The present CETIAT design (Figure 3) proved superior to
the spherical head; the CETIAT design retained the properties of the spherical head
with a cross-flow angle greater than 50◦ (Smith [16]).

6. Results and Discussion

Using the method described by Antonia and Luxton [2, 3], velocity profiles norm-
alised by a reference height of R = 0.512 m were plotted over a range of flow rates
(Figure 4). The data were collected near the downstream end of the DAWA wind
tunnel with engine speeds ranging from 1000 to 2200 rpm. With normalization all
the data can be fitted to a single profile. Three sets of regression lines can be drawn
through the profile, producing two knees. Complementary sets of measurements
on page 375 show the Reynolds stresses (Figure 5); the stresses are constant up to
about 0.1 m and increase to about zero at 0.4 m; the Integral Length Scale � (Fig-
ure 6) is constant to about 0.3 m. We suggest the lower knee at about (0.3)2 ∼ 0.1 m
corresponds to the top of the ‘constant stress layer’, and the second knee at about
(0.55)2 ∼ 0.3 m defines the top of the boundary layer δ (see Figure 1).

The ‘constant stress layer’ is clearly identified in Figure 5 and is a classical
feature in many laboratory and field experiments. Raupach et al. [15] studied ar-
rays of rough surfaces and report regions of constant stress up to about 30% of
the boundary layer. In agricultural designs with simlar roughnesses, (Raupach and
Leys [19], Figure 8) show similar regions of constant stress. It ‘occurs close to the
walls in most turbulent boundary layers’ (Tennekes and Lumley [12], p. 54, line 3).
The classic work of Bagnold [20] presents both laboratory and field measurements
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Figure 4. The profile of horizontal velocities, normalised to reference height R, 0.512 m,
roughly the centre of the wind tunnel, for engine speeds of 1000 to 2200 rpm. Significant
changes in the boundary layer are represented by the intersection of two lines, the ‘knees’
(Antonio and Luxton [2, 3]). The boundary layer height δ is considered to occur at the
‘knee’ around z = 0.3 m. Windspeeds UR at R = 0.512 m used to normalise the data:
rpm 1000 1200 1400 1600 1800 2000 2200
m/s 8.15 9.95 11.72 13.37 15.12 16.84 18.60.

based on the concept of a layer with a ‘constant stress’, a ‘scaling velocity u�’ or
a ‘logarithmic layer’. (Lyons and Scott [21], pp. 45–52) use the observation of a
nearly constant stress to derive the logarithmic profile. It is arguable that the stress
is truely constant in Figure 5 or in any 2D or 3D boundary layer; nevertheless these
experimental measurements present a region of constant stress, somewhere below
about 0.1 m.

Three independent techniques for estimating τo and u∗ are compared in Fig-
ure 7, for the range of windspeeds: (1) Kármán integral momentum method with
δ = 0.3 m, (2) XWA, and (3) the MTP. The MTP values are shown on the abscissa;
the correspondence between the MTP and the integral momentum values is presen-
ted as a series of open squares and a linear regression line passing through zero.
The line would ideally have a slope of 1.00 but has a slope of 1.02. The circles
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Figure 5. Reynolds stress profiles over a range of flow rates with engine speeds of 2200 ( � ),
1800 ( � ), 1400 ( � ), and 1000 ( • ) rpm.

Figure 6. Variation of the Integral Length Scale � with height and windspeed.
� - Standard surface at engine speed of 1600 rpm.◦ - Standard surface at engine speeds of 1000, 1400, 1800 2200 rpm.• - Bitumen surface at 1000, 1400 1800 and 2200 rpm.
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Figure 7. Comparison of friction velocity values obtained by the integral momentum method
and measurements using a X-wire (z = 76 mm, z = 95 mm), with the Murdoch Turbulence
Probe (Smith [16]).

represent XWA measurements of u∗ at two heights, 76 mm and 95 mm. The MTP
was placed 50 mm above the surface.

The XWA values measured at heights above the MTP may be 10% larger or 10%
smaller than the MTP values. The XWA measurements are uncertain because the
two hot wires do not measure the lateral wind; they drift, are difficult to maintain
and position accurately and don’t respond properly at large angles to the wind. The
Murdoch Turbulence Probe is specially designed to make 3D measurements in
harsh environments and minimise other effects. It measures differential pressures
and is isolated from the environment but still does show a drift, with a time factor
of about a month.

Scott [22] presents the method of a posteriori realignment of the statistics as
used by the MTP processor. Correlation statistics and mean values are required
for each wind component. The realignment could not be applied to the XWA.
Scott4 has estimated the error involved using data from a high resolution 3-vane
Gil Anenometer set (in the atmosphere) and the MTP (present data from the DAWA
wind tunnel). It seems a 2 1

2
◦

error in the vertical direction can produce a 20% error
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in the shear stress and a 10% error in u∗. Ignorance of the lateral wind produces a
small error provided the lateral wind is small compared to the longitudinal wind.

An alternate comparison can also be made using the wind profile. Most profiles
in the DAWA wind tunnel are logarithmic, even well above the ‘boundary layer’
or ‘inner layer’. In different experiments, Findlater et al. ([1], see Figure 8 and
Tables II and III) present profiles from a pitot rake and the MTP statistics. The
u∗ values from the slope of the profile and τo or Reynolds stresses (u

′
w

′
) near

the surface were used to estimate values of von Kármán’s constant κ . Four values
measured in the same tunnel with surface roughnesses similar to the peg-board and
similar windspeeds suggest that κ is around 0.3. Though the normally accepted
value for atmospheric turbulence is 0.4, the lower value of 0.3 seems correct for
estimating shear stresses from profiles in these agricultural wind tunnels (with
‘tripping fences’). One interpretation is that the logarithmic profile is more of a
‘law of the wake’ that scales from the top of the boundary layer. Using 0.4 rather
than 0.3 (mistakenly, from the preceding argument) suggests the u∗ estimates from
the profile (outside δ/10) would be 25% higher than values measured with the MTP
(inside δ/10).

The overall interpretation is that the MTP and XWA data on Figure 7 represent
the same ‘constant stress values’ within a 10% error. They have a slope similar to
the given line and straddle the u∗ values calculated using the integral momentum
method. We accept that the measured values are below about 0.1 m and expect
that both the XWA and the MTP are measuring, roughly, the same values, in the
‘constant stress layer’.

7. Error Estimates

The Karman Integral Expression also allows an estimate of the error in measuring
the shear stress in the wind tunnel, from the non-equilibrium development of the
wind profile along the working section. The effect is approximated by the two right
terms in equation 8. Two classical velocity profiles are considered; a separable,
product solution and a logarithmic solution:

error = uδ

∂

∂x

∫ δ

o

udz − ∂

∂x

∫ δ

o

u2dz. (10)

7.1. SEPARABLE SOLUTION

A simple, general form for the profile might be

u(x, z) ≈ F(x) · G(z).
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Substituting the above into Equation (10), noting that δ = δ(x), and completing
the differentiation with respect to x gives(

d

dx
F(x)

) (
uδ

∫ δ(x)

0
G(z)dz − 2 F(x)

∫ δ(x)

0
(G(z))2 dz

)
. (11)

The DAWA wind tunnel has a wind profile that tends to be logarithmic5 so that
G(z) ≈ ln( z

zo
). Inserting this logarithmic form into the error expression and integ-

rating from z = zo to z = δ(x) gives an error of

δ

(
d

dx
F(x)

) (
3 uδ − uδ ln(

δ

zo
) − 4 F(x)

)
, (12)

providing the vertical integration begins when u = 0 at roughness height zo.
Information for assessment of this error includes upwind measurements; prac-

tically, however, placement of instruments upwind changes the conditions in the
tunnel. The total flow through the tunnel must be preserved, however; provided
some symmetry is maintained during the flow development, mass continuity dic-
tates that6

∫ R

zo

u(x, z)dz =
∫ R

zo

F(x) ln(
z

zo
)dz = ‘a constant’ (13)

or

‘a constant‘ = F(x)

(
R ln(

R

zo
) − R + zo

)

which means that F(x) must be a constant, d
dx

F(x) = 0, and from (11)

error ≈ 0. (14)

A product functional form for u, two separate functions of x and z, dictates that the
flow must act as if at equilibrium.

7.2. LOGARITHMIC SOLUTION

Revealing is an alternate, logarithmic form with zo = g(x), ‘roughness varying
along the tunnel’, with a composited form for the error,

error =
∫ δ(x)

g(x)

(uδ

∂

∂x
u(x, z) − ∂

∂x
u(x, z)2) dz. (15)

The form u(x, z) = f(x) ln( z
g(x)

) is substituted; the error estimate is

[−� ln2(�) + ln(�) + 3 � ln(�) − 4 � + 4 ] · ∂
∂x

f(x) g(x) f(x)

+[� ln(�) + ln(�) − 2 � + 2 ] · ∂
∂x

g(x) f(x) f(x), (16)
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where � = δ(x)

g(x)
is the height of the boundary layer measured in roughness lengths.

Combine the terms containing �.

K (
∂

∂x
f(x)) g(x) f(x) + L (

∂

∂x
g(x)) f(x)2, (17)

K and L in Equation (17), would be constants if the relative boundary layer height
� is constant; the velocity profile is ‘similar’ down the tunnel.

The coupling between the f (x) and g(x) is crucial to the estimate; as above,
this is found using the continuity relationship:

∫ R

g(x)

f(x) ln(
z

g(x)
) dz = f(x) R ln(

R

g(x)
) − f(x) R + f(x) g(x) = const, (18)

which reveals that f (x) and ∂
∂x

f(x) are functions of g(x).

f(x) = const

g(x) + R ln( R
g(x)

) − R
, (19)

∂

∂x
f(x)) := − const ( ∂

∂x
g(x)) (−R + g(x))

(g(x) + R ln( R
g(x)

) − R)2 g(x)
. (20)

Combining these results with equation 17 gives another estimate for the error.

( ∂
∂x

g(x)) const2 ( R − g(x))K

(g(x) + R ln( R
g(x)

) − R)3
+ ( ∂

∂x
g(x)) const2 L

(g(x) + R ln( R
g(x)

) − R)2
. (21)

It is clear that g(x) must vary with x for there to be an error. The reference
height R is large compared to g(x) and R/g(x) ≈ �. The coefficients of K and
L are both positive so that the L term is always positive and the K term is always
negative. A further, approximate form for the error is

≈
∂
∂x

g(x) ( const
R )2

(ln(�) − 1)2

(
K

(ln(�) − 1)
+ L

)
(22)

or, substituting for K and L,

error ≈
∂
∂x

g(x) ( const
� g(x) )

2

(ln(�) − 1)2

(
ln2(�) − 2 � + 4

(ln(�) − 1)
− 2

)
. (23)

This estimation suggests an error7 of around 10%, an error similar to that sug-
gested on Figure 7. Importantly, evoking of mass continuity relates f (x) and g(x);
K and L have opposite signs and there is a tendency for error cancellation. Both
forms for the error; an arbitrary, separable product solution and a logarithmic solu-
tion, commonly presumed mean velocity profiles, lead to relatively small errors.
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It seems clear that the error in estimating shear stress with the Kármán Integral
method is small in the non-equilibrium flow of the DAWA wind tunnel.

The data (Figure 7) and above estimates bring the realisation that the error in
using the Kármán Integral Method may be small or zero in non-equilibrium flow.
Remarkable is the observation of a near-logarithmic velocity profile throughout this
tunnel (Findlater et al. [1] and Raupach and Leys [19]). The logarithmic law seems
to have some inherent merit itself; it is commonly observed in real flows (Lyons
and Scott [21]), though it is a mistake to presume the logarithmic pattern is unique
(Carminati et al. [11]). We conclude that shear stress can be measured with the
Kármán Integral Momentum Method, even when the profile is out-of equilibrium.
Shear stress data from two independent experimental methods confirm this.

The Kármán Integral Momentum Method is robust and calculation of shear
stress is not dependent on having a boundary layer in a ‘nearly equilibrium’ state.
Indeed, measuring τo and the pressure gradient can give a length scale, the bound-
ary layer height δ. Small changes in the boundary layer are unlikely to correspond
with large changes in the stress. The nature of the integral and the subtraction
of similar terms tends toward minimization and cancellation of errors (see Equa-
tions (10) and (15)). Regardless of the theory, however, the effect is experimentally
confirmed. Additionally, long woollen threads placed near the upper edge of the
boundary layer revealed almost no drop along the length of the tunnel; variations
were less than 10 cm8.

Acceptance of the technique and the data allows some speculation regarding
scaling of the portable wind tunnel data and atmospheric data/effects. Integral
scales were calculated for the longitudinal winds (see Figure 6). These scales may
represent the average eddy size for ‘frozen’ turbulence along the wind direction.
Within the boundary layer (with delta around 0.3 m), � is about 0.2 m; outside the
boundary layer � is about 1.5 m. Little data on Lambda has been acquired with
wind erosion (except the preliminary data presented by Findlater et al. [1] but it
might be suggested that � scales the erosion, from the outer flow (1.5 m) to the
inner flow (0.2 m). In an open atmospheric event, one expects the outer scale to be
10 m or more. Perhaps outer or inner values of � (or both) will give an appropriate
length scale to the erosion, and allow credible application of data collected in the
field to what is expected in the atmosphere.

8. Conclusions

The principal results of this research are:
(1) In wind tunnels with pressure gradients and steady boundary layer flows, the

surface stress can be determined from the product of the boundary layer height
and the pressure gradient. The flow does not need to be in equilibrium.

(2) The calculation uses the von Kármán Integral Momentum Equation and allows
error estimates. Corroboration comes from three different experimental tech-
niques: a cross-wire, hot-wire XWA; a pressure-based probe for measurements
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in harsh flows, the Murdoch Turbulence Probe MTP; and wind profiles from a
pitot rake.

(3) The DAWA agricultural wind tunnel with a rough surface, turbulent eroding
winds, a ‘tripping’ fence and a ‘well-developed flow’ has a logarithmic profile
and a ‘constant stress layer’ near the surface.

Importantly, this experimental corroboration not only allows an analysis of non-
equilibrium flows and estimation of u∗ from the measured pressure gradient and
the wind profile, but does so without the necessity of expensive and invasive equip-
ment. That is, it is difficult to measure wind speeds in three directions, let alone
during a sand blast; sensors and instruments placed in the flow or on the surface
must alter the flow and/or disrupt the surface. Mean wind profiles combined with
pressure gradient measurements can estimate surface shear stresses indirectly.

Notes

1. Unconsidered in the classical integral method is the term relating to the change in the boundary
layer with x. The exact expression is∫ δ

o

∂(u2)

∂x
dz = ∂

∂x

∫ δ

o
(u2)dz − u2

δ

∂δ

∂x
.

The last term ‘cancels out’ in Equation (8).
2. If all the terms on the left side of (1) are ignored

∂τ

∂z
∼= ∂p

∂x
⇒ τ = ∂p

∂x
(z − δ) ⇒ τo = −δ

∂p

∂x
.

3. Manufacturer: Roger Handsworth of Platypus Engineering, Hobart, Tasmania.
4. http://maple.murdoch.edu.au/view.html#lateral
5. Raupach and Leys [19], Figure 4, present data from a tunnel with a ‘tent-shape’ manufactured to

the same plan as the present tunnel; all of our profile studies, including data from the same tunnel
collected by the authors Findlater et al. [1], Figure 8, are nearly logarithmic. Apart from this,
this calculation is independent of the functional form for G(z), and a power function produces
the same result.

6. A condition strictly adhered to in a pipe in non-compressible flow. The tent-shaped tunnel has
different roughnesses on the lower and upper surfaces.

7. Associated values might be: � ≈ 300, g(x) ≈ .001 m, g′(x) ≈ 0.0001, δ ≈ 30 cm, zo ≈ 1 mm

(see Findlater et al. [1]). Notionally the g′(x) allows for a change in roughness of 10% in one
meter of flow, along the tunnel. The const is the flow rate per lateral meter of tunnel which is

around 5 m
s . The shear stress values would be about −.6m2

s2 (see Figure 7, u∗ ≈ 0.8).
8. A thread must ‘slump’ along the tunnel. The lift or drag coefficients are mostly constant. As

the thread ‘slumps’, it exposes more area to the flow and experiences more drag and lift. The
‘slumping’ also means falling toward the floor of the tunnel, where there is less wind and less
drag and lift. The woolen thread attains a limited ‘holding position’ with a slope around 0.01 to
0.001 in a 10m

s wind.
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