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Abstract

We determine hazards within a smart house environment using an emotive computing framework.
Representing a hazardous situation as an abnormal activity, we model normality using the concept
of anxiety, using an agent based probabilistic approach. Interactions between a user and the
environment are determined using multi-modal sensor data. The anxiety framework is a scalable,
real-time approach that is able to incorporate data from a number of sources, or agents, and able
to accommodate interleaving event sequences. In addition to using simple sensors, we introduce a
method for using audio as a pervasive sensor indicating the presence of an activity. The audio data
enabled the detection of activity when interactions between a user and a monitored device didn’t
occur, successfully preventing false hazardous situations from being detected. We present results for
a number of activity sequences, both normal and abnormal.
c� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

This paper is concerned with the development of smart environments for the assisted
living of elderly people. A particular aspect of smart environments relevant to the care of
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the elderly is the determination of hazards within the environment in real time. Typical
hazards are appliances being left unattended, such as unattended electrical devices, or
abnormal environmental states such as a front door being left open and unattended. It
is important to note that estimation of a hazard must be made in the context of the user’s
normal behaviour, and it is this requirement that makes the problem difficult.

Most systems for activity monitoring are interested in event detection after the fact,
for example every couple of hours [1]. Although this is valid in many cases, real time
response in needed for many hazards at home e.g. leaving the bath to run over. Other
approaches to such problems is to use temporal models of activity recognition with hidden
Markov models [2,3] and build representations for normality from which abnormality
can be inferred. However, the variability in behaviour patterns both within and across
individuals makes it difficult to detect consistent patterns. Additionally the computational
complexity makes it difficult to use in real time. Furthermore, when multiple as well as
multi-modal sensors are used, a typical probabilistic based method of activity recognition
starts to fail because the state space grows exponentially with the number of devices and
states.

Potential hazards can be determined in many ways across a broad spectrum of
modalities. At one end of the spectrum, we can have a fully monitored home with multiple
cameras augmented by other sensors in the environment. At the other end of the spectrum,
the home can be augmented with simple sensors such as pressure mats, simple microphones
(for sound level sensing) and reed switches. All these sensors have modalities that have
advantages and disadvantages. For example pressure pads give simple discrete on/off
events usually with 100% reliability. Video processing is highly flexible and consequently
can be used to detect many different aspects of activity. However the current state of the
art in video processing is not reliable enough and the processing required is complex.
Although microphones can be regarded as simple sensors when used as a sound level
device e.g. for detecting loud noises, it can also be used to detect more complex audio
events in various ways. They can also be used to localise sound events [4] but this requires
complex processing. Ultimately, the challenge is the integration of most if not all of these
different devices seamlessly into a framework for activity and hazard monitoring. When
using audio and video sensors, one must be aware of the privacy issues raised and hence it
is important to use these devices to only detect events and not record the video and sound
for later playback.

In this paper we explore the integration of sound, and simple sensors such as pressure
pads, reed switches and X10 devices into a multi-modal framework for hazard detection
in assisted living. This is based on a recent model proposed in [5] where each device,
with the potential to be hazardous, is represented as an agent. A measure of anxiety is
associated with each agent, representing the potential hazard represented by the device.
The proposed agent based approach is device centric and the state space is automatically
factored, thus making the approach scalable and applicable in small as well as large
pervasive environments. Whilst the previous work concentrated on using simple sensors
such as pressure pads and reed switches, we explore a more comprehensive integration
of the multi-modal sensor data, in the form of simple sensor and audio data, into the
anxiety framework. We introduce a method for using the audio as a pervasive sensor
using foreground sound events to determine audio activity. We argue that the use of sound
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and simple sensors can give the same functionality as the alternative approach of video
processing but with much less processing costs and lower bandwidth. Additionally, we
formalise the anxiety model such that any arbitrary sensor can be seamlessly integrated.
The anxiety is formalised by deriving statistical models of the interactions of a user with
devices within the environment.

This paper incorporates a very important modality, namely sound and in particular the
detection of what are defined to be sound events indicative of normal activities by the
occupant. There are two ways sound can be used. The first and more difficult approach
is to recognise individual sounds and relate them to specific activities. The second and
more general approach is to model background noise, from which foreground sounds
can be detected. Background noise is defined as consisting of typical regularly occurring
sounds such as the fridge being on and traffic. Events based on sound are different to
those generated by pressure pads, reed switches and accelerometers, in that there is no
spatial information available. In fact sound is picked up wherever the activity is occurring
such as away from other sensors and devices and hence can detect activity when people
are not interacting with devices but still moving around. The characteristics of sound
implies that it provides a pervasive and contextual source of data from which we get many
foreground events. This is in contrast to other discrete simple sensors, whose use is limited
by practicality issues such as their placement, i.e. such sensors require an interaction
between the user and a monitored object.

We detail a method to implement the system within a smart house environment. We
close the loop between the anxiety model, sensors, and user by using a personal digital
assistant (PDA) to communicate with the occupant. The PDA is further used as an agent in
the system. An anxiety is associated with the PDA when an interaction between the user
and the PDA is expected.

The significance of this paper lies in two key areas. Firstly, this paper details the
implementation of a scalable, agent based, emotive computing framework for determining
hazards in a smart house environment. Secondly, the paper describes the incorporation of
multiple sources of sensor data into the anxiety framework, most notably the use of audio
as a pervasive method for examining the activities of an user over a wide area. The novelty
is threefold. Firstly, we introduce and formalise an interaction based probabilistic model
for hazard detection within a smart house environment. The anxiety represents an emotive
model that is scalable and independent of activity sequences. Secondly, we use the robust
detection of foreground audio events for activity detection in assisted living. This enables
the integration of event detection by audio into the anxiety framework demonstrating (a) the
extended functionality of the model and (b) the fusion of multi-modal sensor information
within the framework. Thirdly, we incorporate a PDA as a third form of sensor, providing
interactive feedback from a user.

The layout of this paper is as follows. Section 2 discusses related work in the areas
of audio surveillance and smart home environments, and outlines the relevant background
information for the “anxious home” and the audio background modelling. Section 4 details
audio activity detection and our multi-modal approach to the determination of anxiety.
Section 5 describes the experimental process and results of the implementation of the
multi-modal anxiety approach. Section 6 describes our implementation of the system in
a smart house environment.
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2. Background

2.1. The anxious home

Anxiety is an emotion in the human sense and recently, much work has been carried out
into emotional computing [6], mainly to enable computers to communicate with humans.
It is argued that decision making by humans requires emotions as well as rational thought
for fast decision making. Hence modelling human emotions in computer decision making
may improve the performance of computers for such activities.

The previous approach to hazard detection [5] within the smart house environment
modelled the hazards within the environment by learning the patterns of interaction
between a user and numerous simple sensors. This method can cope with many activities
but relies on an occupant moving around and regularly interacting with devices monitored
by sensors during normal activities. This was extended to include simple loud sound
detection as well as wearable devices such as accelerometers and PDAs [7]. Loud noises
were taken to indicate potential emergencies but no attempt was made to identify the type
of noise. The accelerometers were used on the body to detect the occupant’s stance and
whether they had fallen. The PDA was used to obtain a response from the user for one of
these events and an emergency invoked if no response was received from the occupant.

2.2. Smart house activity monitoring

There has been considerable research using simple sensor data to monitor activity.
“Stove Guard”1 has current and motion sensors that can turn off the stove after a certain
time if it is on (current flowing), and if it is unattended (no motion detected). Combinations
of simple sensors have been used for recognising activity in houses [8–10]. Glascock and
Kutzik [1,11] use a small number of infra-red sensors for coarse activity monitoring that
is mainly suited for making sure someone has taken medication, eaten etc. which only
requires events to be reported at two hour intervals. Recently, a system [12] has been
proposed that uses a form of anxiety that rises if there is little activity in the house,
determined by the use of a number of standard sensors, such as window and door sensors.
If the lack of activity is unusual, based on learned data, an alarm can be raised. The work
presented in this paper differs from the above in that we are interested in the interactions
of various devices enabling richer semantics to be inferred and monitored in real time
enabling prompt responses to abnormal behaviour.

Considerable research has been performed in the recognition of the complex patterns of
activities that occur in smart houses. Much of this research focuses on using various forms
of Markov model: hidden Markov models, hierarchical hidden Markov models, abstract
hidden Markov models etc. [2,3,13–15]. Models are constructed for each type of activity,
with the best matching model for subsequently observed data being used to interpret
the activity represented by the data. Hidden Markov models (HMM) can accommodate
variations in the duration of activities, but are sensitive to changes in the order of sub-
activities and events, and the interleaving of events. We present a method that models

1 www.absoluteautomation.com/stoveguard — accessed Feb’05.

http://www.absoluteautomation.com/stoveguard
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the duration between interactions with devices in the environment. The method is able
to provide meaningful results when presented with differing sequences of interactions
resulting from the interleaving of events and changes in the order of the events.

2.3. Audio surveillance and monitoring

Audio analysis methods for surveillance and monitoring have predominantly centred
on the detection of specific audio cues, or sound events. Such methods include a tele-
monitoring system for the detection of sound events such as cries for help [16,17], the
classification of sound categories related to bathroom activity [18], and the detection of
alarm sounds [19]. Cowling [20,21] proposed a method to determine a taxonomy for the
classification of environmental sounds for the purpose of audio surveillance. Härmä [22]
proposed a method for monitoring acoustic activity using supervised and unsupervised
clustering. While these methods focus on the detection of specific sound events, our
approach extends audio surveillance by deriving contextual information from the analysis
of the audio signal.

2.4. Audio background modelling

We define background audio to be the persistent audio characteristics that dominate a
portion of the signal. We then associate foreground audio with activities occurring within
the environment. Background audio is determined using an on-line, adaptive Gaussian
Mixture Model (GMM) to model the background audio, as detailed in [23]. This method
was augmented by combining fragmented background models using entropy calculated
between the distributions within the GMM, which results in a more robust determination
of the background model. The foreground sound events are characterised by a difference in
the characteristics of the audio accounting for the preceding audio context. This is a more
robust approach in comparison with sound level sensing.

The algorithm enables the determination of sounds within the environment that differ
from the background audio. The nature of the algorithm is such that the audio data,
once processed, can be discarded, in order to reduce privacy concerns. Furthermore, the
processing costs associated with the algorithm are low, approximately 0.013 s is required
to process each second of audio data (determined using a Pentium 4 3.0 GHz processor
running Windows XP).

3. The anxiety model

The main objective of this research is to model normality i.e. the normal activities of
an occupant in their house. What we desire is a measure that will be below a threshold for
normal activity but rises above the threshold for abnormal activities. Importantly we do not
want to model abnormality directly. Abnormality, almost by definition, is not modellable
because abnormal events rarely occur and would not be statistically meaningful. The
essential idea proposed in this paper is that a device, when on, is in a hazardous state until
it is switched off. Such devices are stoves, baths and fridges. The longer each device is left
unattended the more hazardous it should become e.g. leaving a stove on for eight hours
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should be considered dangerous. We introduce the concept of anxiety here to represent the
patterns of activity associated with a device. This anxiety measure essentially represents
how worried the device is given that it is being ignored by the occupant. The more the
occupant interacts with the device or is found to be nearby, the less anxious the device is.
When a device is turned on, its anxiety is zero, but rises over time if it is not attended by
the occupant. Eventually when it reaches some threshold, some action should be taken.
An important issue is what is meant by attended. This can be modelled in two ways; (1)
the device is directly interacted with (settings changed or occupant adjacent e.g. standing
on a pressure pad next to the device), and (2) the device is observed from close range
e.g. opening the fridge that is near the cooker means the occupant can check on the state
of the stove easily or can get to the stove within a reasonable time to interact with it.

Each of these should mean the anxiety of the device reduces instantaneously by some
amount and then starts to rise again. The second model can be thought of as a function of
whether (1) the device is normally interacted with, and (2) how far away it is. By normally
interacted with, we mean that, for example, when the stove is on, it is normal to visit the
fridge regularly. By how far away the device is, we mean that interaction with near devices
is more reassuring than with devices far away. For example, interacting with the fridge that
is near means it is easy to observe the stove and the occupant can get to the stove quickly.
Interacting with the bath would mean it would take longer to reach the stove and, normally,
it would be difficult to observe the stove from the bathroom.

To further illustrate the concept, consider a breakfast scenario consisting of the
following sequence of events:

• Occupant opens cupboard, takes cereal from cupboard, closes cupboard, puts cereal on
table.

• Occupant opens fridge door, takes egg and milk from fridge, puts milk on table, put egg
on stove to cook, closes fridge door.

• Occupant sits down at table, eats breakfast.
• Occupant gets egg from stove, turns off stove, sits down, eats egg.

There are two potentially hazardous situations here. The first is leaving the stove on to
boil the egg dry and then melt the pan. The second is leaving the fridge open which would
spoil the food, use electricity and possible burn out the motor. There are also interleaved
activities here i.e. the stove is turned on while the fridge is open. Once the stove is turned
on, its anxiety will start to rise. The fact that the occupant is nearby (by the table) should
mean the anxiety should not rise as fast as, say, if the occupant leaves the kitchen. As long
as the occupant checks on the stove regularly or finishes eating their cereal in time, the
anxiety shouldn’t reach the alarm level. When the occupant turns off the stove, the anxiety
for the stove should go to zero as it is not in a hazardous state anymore. Once the occupant
leaves the fridge door open, the anxiety for the fridge should rise and reach the alarm state.
If the door is closed before it reaches this state then anxiety reduces to zero and no alarm
is signalled.

The approach follows an agent based methodology. Each device with the potential to be
a hazard is represented as an agent, with many agents representing the various potentially
hazardous devices within the environment. Each agent continuously computes a function
that represents how “anxious” it is when it is active (switched on) and hence has the
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potential to get into a hazardous state. An agent based approach allows us to treat each
device independently, as well as allowing us to estimate the overall state of the house or
any room from the anxieties of each of the devices. In other words, the more devices that
are active, each with its own anxiety value, the more anxious the house or room would
become. An extreme case would be cooking the dinner and running the bath at the same
time. Anxiety would be kept low if the occupant kept moving between the stove and the
bath to check the progress of the cooking and bath filling, but become high if the occupant
ignored one or both devices. Note the kitchen could have an anxiety based on the anxiety
of all the hazardous devices present in the kitchen. If both the stove and fridge are in
hazardous states and not attended to, then the kitchen anxiety should be some form of
combination of these anxieties.

Devices are defined as monitored objects within the environment, interaction with
devices is monitored through the use of methods such as sensors (e.g. reed switches and
pressure pads). Devices are considered as either hazardous or passive. A hazardous device
refers to devices that have to be attended to while they are in a hazardous state, e.g. stove or
fridge. The second class, passive devices, consist of devices for which there is no hazardous
state, such as cupboards. For example, no hazardous state is associated with a cupboard as
no hazard is introduced by leaving the cupboard open.

A measure of anxiety for each hazardous device is formulated, with the grouping of the
anxiety measures for hazardous devices forming the anxious home. Anxiety is formulated
with statistical models consisting of a model representing typical interactions of a user with
the device, and a model representing interaction with other devices, both hazardous and
passive, while the device is active. The anxiety for the hazardous device is then determined
using a probabilistic framework generated using the expected time periods between an
interaction with the hazardous device, and the other devices within the environment. As
this approach does not model sequences directly, complex activity patterns along with
variations in activity sequences are accounted for. The anxiety is then used as an indicator
to determine hazardous situations and provide feedback to a user.

From the above description, it can be inferred that a number of parameters are needed to
describe how anxiety works. We take a learning approach to this through interacting with
the occupant as initially, only the occupant (or carer) will really understand what is normal
and abnormal. In this paper we take a pessimistic approach to anxiety and choose the worst
case scenario. Such a scenario can occur when someone is standing in the kitchen for a long
period of time or has collapsed on the floor. Given that we are using device activities to
infer intent, these two scenarios cannot be separated so we assume the worst — they have
collapsed. Pessimistically, if we ask the occupant (or carer) if they are okay (normal) when
the anxiety exceeds a threshold, we can use the information about the event to update the
parameters.

4. Multi-modal approach to anxiety determination

In experimentation, the anxiety is determined for each hazardous device independently.
In the context of modelling the interactions associated with the hazardous device for which
the anxiety is being determined, the remaining hazardous devices are considered to be
passive.
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Fig. 1. Anxiety event sequence for device d

i

in a hazardous state.

To incorporate audio into the statistical model for anxiety we treat audio activity as
an indication of an interaction between the occupant and the environment. That is, the
environment is the monitored device, and the audio is the sensor. The presence of the
audio is then treated as an interaction with a passive device, indicating a non-hazardous
interaction between the user and environment. Therefore the presence of audio activity,
i.e. the presence of a segment of foreground audio, is processed in a similar manner to
a sensor. The beginning of a foreground segment of audio indicates the activation, or on
state, of the audio activity, which then reverts to the off state on completion of the activity,
the transition from foreground audio to background. We note that the audio is processed as
a simple, yet pervasive, sensor. Such a sensor has low processing overheads in conjunction
with a number of advantages over visual sensors, such as video and motion sensors. Such
advantages arise due to the nature of the propagation of sound signals, which enable the
sound sensor to be pervasive, i.e. a single sensor covering a large area. Additionally, the
audio sensor does not suffer from occlusion to the extent observed with visual sensors.
This use of audio as a pervasive sensor was first proposed in [24].

In this paper P denotes the cumulative distribution function, and p denotes probability
density. In determining the anxiety for the hazardous device d

i

, we use a number of
statistical models. For the device d

i

we define the Self Interaction Duration model (SID),
p

d

i

SID, which denotes the probability density distribution of the time intervals between
interactions with d

i

. The corresponding cumulative distribution is represented by P

d

i

SID.
The closer this probability gets to one, the more anxious device d

i

becomes.
To formally derive the probabilities, we consider a hazardous episode for device d

i

. The
terminology used is as follows; a value of h

t (i) = 1 indicates device d

i

is in a potentially
hazardous state, a value of d

i (t) = 1 indicates an interaction with device d

i

at time t , and
d

i (t) = 0 indicates that device d

i

was not interacted with at time t . Fig. 1 displays an
example time-line of a hazardous sequence for device d

i

and the interaction of a user with
devices d

i

and d

j

, where a user interacts with device d

i

at times t1 and t2 and with device
d

j

at time t

e

, which is within the interval t1 to t2.
We define the event E

i

1 as the event that captures the consecutive interactions of duration
⌧1 with device d

i

, while d

i

is in a hazardous state. Event E

i

1 is then defined as,

E

i

1(⌧1) = [di (t1) = 1 \ d

i (t2) = 1 \
([di (t1 + ⌧1) = 0] \ [t1 < ⌧1 < t2])|ht1,t2(i) = 1] (1)

where ⌧1 = t2 � t1, and h

t1,t2(i) = 1 indicates that device d

i

is in a hazardous state between
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t1 and t2. That is, E

i

1 describes the event device d

i

is interacted with at t1, with the next
interaction with d

i

occurring at t2. The p

d

i

SID can thus be defined as

p

d

i

SID(⌧1) =

TP
t1=0

E

i

1(⌧1)

P
⌧1

TP
t1=0

E

i

1(⌧1)

, (2)

where t1 = 0 and T represent the beginning and end of the training sequence respectively.
For each passive device we use, we define two statistical models, the Inter Interaction

Duration model (IID), p

d

i

IID, and the Inter Activity Duration model (IAD), p

d

i

IAD.
PIID captures the correlation that when passive device d

j

is interacted with whilst d

i

is in a hazardous state, device d

i

will be interacted with again (see Fig. 1). To formulate
p

d

i

,d
j

IID , we consider the event E

i, j

2 , which captures the interaction interval of device d

i

being
interacted with after device d

j

, given that d

i

is in a hazardous state. Event E

i, j

2 is defined as:

E

i, j

2 (⌧2) = [di (t2) = 1 \ d

j (t
e

) = 1 \
(di (t

e

+ ⌧2) = 0 \ ⌧2 < t2)|ht1,t2(i) = 1] (3)

where ⌧2 = t2 � t

e

(see Fig. 1), p

d

i

,d
j

IID is defined as

p

d

i

,d
j

IID (⌧2) =

TP
t2=0

E

i, j

2 (⌧2)

P
⌧2

TP
t2=0

E

i, j

2 (⌧2)

. (4)

The corresponding cumulative distribution is represented by the P

d

i

,d
j

IID .
PIAD captures the correlation between a device in the hazardous state and potential

interactions with other devices (see Fig. 1). To formulate p

d

i

,d
j

IAD , we consider the event
E

i, j

3 , which captures the interaction interval between device d

j

being interacted with after
device d

i

is interacted with, given that d

i

is in a hazardous state. Event E

i, j

3 is defined as:

E

i, j

3 (⌧3) = [di (t1) = 1 \ d

j (t
e

) = 1 \
([di (t1 + ⌧3) = 0] \ [t1 < ⌧3 < t

e

]) | h

t1,te (i) = 1] (5)

where ⌧3 = t

e

� t1 (see Fig. 1), p

d

i

,d
j

IAD is defined as

p

d

i

,d
j

IAD (⌧3) =

TP
t1=0

E

i, j

3 (⌧3)

P
⌧3

TP
t1=0

E

i, j

3 (⌧3)

. (6)

The corresponding cumulative distribution is represented by the P

d

i

,d
j

IAD .
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We also determine the Interaction Event model (IE), P

d

i

,d
j

IE , which denotes the
probability of interaction between the user with passive device d

j

while device d

i

is in

a hazardous state. For example, P

d

i

,d
j

IE = 0.9 means that 90% of the time device d

i

is in a
hazardous state, the user interacts with device j . Consider event E

i, j

4 (t), defined as:

E

i, j

4 (t) =
" 
X

t

d

j (t)

!

� 1 | h

t (i) = 1

#

. (7)

P

d

i

,d
j

IE is then defined as

P

d

i

,d
j

IE =
P

E

i

4( j, t)

kh(i)k . (8)

The anxiety associated with a device d

i

is attenuated if a user interacts with devices
in the environment associated with device d

i

. Consequently, we modify the probability
associated with the hazardous device P

d

i

SID, to reflect these interactions. The scaling factor
associated with each device in the environment is defined as

S

d

i

,d
j (t, t1, t

e

j

) = 1.0 � P

d

i

,d
j

IE ⇥ (1.0 � P

d

i

,d
j

IAD (t
e

j

� t1))

⇥ (1.0 � P

d

i

,d
j

IID (t � t

e

j

)), (9)

where t is the current time, t1 is the time of last interact with device d

i

and t

e

j

is the time

of last interaction with device d

j

. The value 1.0 � P

d

i

,d
j

IID () represents the probability that a
user will interact with device d

i

after the current time t , given that device d

j

was interacted

with at time t

e

. The value 1.0�P

d

i

,d
j

IAD () represents the probability of interacting with device
d

j

, at time t

e

given an interaction with device d

i

, at time t1.
The probabilities are then incorporated to determine an overall anxiety associated with

device d

i

:

Anxietyd

i

overall(t) = P

d

i

SID(t � t1) ⇥
Y

8e

j

S

d

i

,d
j (⌧2, ⌧3) (10)

where e

j

is an event for device d

j

and assuming that e

j

8 j are independent of each other.
One problem with this formulation is that if the occupant repeatedly interacts with a

device, the anxiety for the hazardous device will keep on reducing. This can be overcome
by only using the latest interaction for each device. This can be argued for because once
the latest event occurs, all the previous events are not relevant. The anxiety then becomes:

Anxietyd

i

overall(t) = P

d

i

SID(t � t

o

) ⇥
Y

8 j

S

d

i

,d
j (t

o

, t � t

max
e

j

) (11)

where t

max
e

j

is the time of the last event for device d

j

.
As the anxiety is modelled for each hazardous device independently, the unification of

the anxieties need to be considered. Currently the device with the highest anxiety is used
to represent the overall anxiety associated with the house. A value for the anxiety of 1.0
indicates that something that has never been seen before has occurred. In keeping with the
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Fig. 2. One room of the Smart House laboratory environment.

pessimistic nature of the anxiety, a lower threshold is set, e.g. 0.8, at which point the user
is asked if everything is okay (normal).

5. Experimentation

5.1. Experimental environment

To explore these and other ideas, we developed a Smart House laboratory environment.
The laboratory is populated with a number of devices to simulate those that would be
found in a typical house. The house has several rooms: a kitchen, lounge and bedroom
(Fig. 2 shows two of the rooms). The kitchen includes a small electric stove, microwave
oven, fridge, dishwasher, cupboards, a kitchen table and chair. Each device is augmented
with sensors to detect interaction by the occupant. Reed switches detect the opening and
closing of doors (e.g. the fridge, dishwasher, microwave, cupboards), while pressure mats
detect the proximity of the occupant to the doorways. For hazardous devices, pressure mats
are positioned on the floor in front of each device to detect proximity and hence potential
interaction by the occupant.

An omnidirectional microphone was attached to the ceiling at the centre of the room
next to the Room 1: overhead camera to capture the audio associated with the activities
in the smart house. The audio activity was determined by synchronising the start and end
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Table 1
Example of a normal breakfast scenario

Activity

1 Get ingredients from the fridge
2 Turn on stove and start cooking
3 Make coffee
4 Get cereal and check on stove
5 Eat cereal
6 Put cereal back and check on stove
7 Put ingredient back in the fridge
8 Turn off stove
9 Eat cooked breakfast

time stamps for foreground sections of the audio signal with the logs obtained from the
sensor data.

5.2. Activity data

Sensor and audio data were collected for a number of test sequences, consisting of a
normal scenario in conjunction with a number of abnormal scenarios. To reduce the time
required to acquire data, the activities within the scenarios were accelerated.

The normal scenario consisted of 35 sequences depicting activities associated with
making breakfast. We focus on the anxiety with respect to the stove. The anxiety increases
over time if no interaction with the stove is determined, and reduces to zero upon
interaction. Variations were present in both the sequence and duration of events, and
the presence of certain events within sequences. The interactions with monitored objects
included the fridge, stove, microwave, dishwasher, toaster, and a cabinet. Audio activities
present that were not associated with a monitored object were predominantly associated
with eating breakfast (e.g. cutlery). Further audio activities occurred due to interaction
with the devices monitored by sensors, e.g. doors slamming. Table 1 displays a typical
example of a normal scenario.

Seven sequences were generated depicting abnormal scenarios to test the determination
of the anxiety for events not seen within the training sequences.

5.3. Audio processing

In total, in excess of four and a half hours of audio data was captured. The normal
scenario data was captured in two sessions. Each session consisted of a number of
contiguous sequences within a single audio signal. Contiguous capture was necessary to
enable the adaptation of the background audio within the environment. The first session
consisted of 1.67 h of audio comprising 21 sequences. The second session contained 14
sequences in 1.33 h of audio. The hazardous sequences were captured within a separate
contiguous audio sequence of 1.73 h in duration.

The audio signal was captured at 44.1 kHz, 16 bit, mono, wave format, and the
background was modelled at a clip size of 1 s. The mean of the wavelet coefficient energy
for seven frequency sub-bands was used to characterise the audio signal, and the parameters
of the algorithm were adjusted to allow multiple background models. Approximately
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Fig. 3. The probability density function, p

STOVE
SID , and cumulative distribution function P

STOVE
SID for the stove

(time in seconds).

Fig. 4. The cumulative distribution functions for other devices (P

STOVE,d
j

IID ) while the stove is in a hazardous
state (time in seconds).

98.4% of the background audio was modelled correctly. This was determined using the
number of foreground events detected by the algorithm over a combined total of 25.4 min
of inactivity recorded at the beginning and end of each data capture sequence. For the
purposes of determining the background accuracy, all audio within the periods of inactivity
was considered to be background, including spurious noises occurring outside the smart-
house environment.

5.4. Training

To determine the anxiety, 32 normal sequences were used to generate the statistical
models, according to Eqs. (1)–(8). Figs. 3 and 4 show example probability density and
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Fig. 5. Test normal sequence 1 (a) without audio (b) with audio.

Fig. 6. Test normal sequence 2 (a) without audio (b) with audio.

cumulative distribution functions generated from the normal activity sequences. Fig. 3
shows an example of the pSID and PSID for the stove, while Fig. 4 shows examples of
PIID for a number of passive devices that were interacted with while the stove was in
a hazardous state. The subsequent models are then used to determine the anxiety for
three normal sequences to determine the effect of incorporating audio, and a number of
hazardous scenarios. The anxiety for all cases was determined using Eq. (10).

5.5. Results

The anxiety was calculated and updated at a resolution of 1 s. Results for a number of
scenarios are shown in Figs. 5–9. The lower graph for each figure displays the time-line
for the sequence of events, indicating patterns of interaction for each device. The upper
graph displays the anxiety associated with the stove (vertical axis) calculated according to
PSID (solid line), and the anxiety attenuated due to interactions with other devices within
the environment (dashed line). The horizontal axis corresponds to the timeline (shown in
seconds) of the scenario.
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Fig. 7. Abnormal interaction scenario — Absence of activity (a) example sequence 1 (b) example sequence 2.

Fig. 8. Abnormal interaction scenario — In presence of activity (a) example sequence 1 (b) example sequence 2.

5.5.1. Attenuating anxiety due to audio

Three normal sequences were used to determine the behaviour of the anxiety for the
stove with and without audio to explore how audio enhances the anxiety measure. We test
the attenuation of anxiety due to the presence of audio activity.

Figs. 5 and 6 show two normal test sequences, calculating the anxiety both with and
without the audio activity data. In Fig. 5(a), the anxiety of the stove when no other device
interactions are considered (PSID) and the anxiety when device interactions are taken into
account (dashed line) are shown. The user switches the stove on at 36 s, and anxiety
starts to increase until 95 s, at which time the user interacts with the stove, reducing the
anxiety to 0. The user keeps interacting with the stove until 101 s, as a result of which the
anxiety stays at 0. The anxiety then rises from 101–126 s when the user moves away to do
other tasks before returning to the stove (126–131 s), again reducing the anxiety to 0. The
anxiety rises again until 136 s, at which point the user turns the stove off. The dashed line
displays the attenuated anxiety. At 45 s and 92 s the anxiety is attenuated due to interactions
with the cabinet. Fig. 5(b), shows the same sequence but this time the audio is included.
Whilst the unattenuated anxiety (solid line) behaves as described before, the attenuated
anxiety (dashed line) shows that the anxiety has been greatly attenuated as compared to
Fig. 5(a), because of the contextual audio.
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Fig. 9. Normal and abnormal activity sequences for (a) Eq. (10) (b) Eq. (11).

Fig. 6(a) and (b) show the results for a different sequence. In Fig. 6(a), between 59 and
92 s, the lack of interaction with monitored devices causes the anxiety to rise unattenuated.
Fig. 6(b) displays a greater level of attenuation due to the presence of audio activity within
this section of the sequence.

Both figures display variations of the breakfast scenario, evidenced by the differing
interactions with the stove. Despite the differences in the sequence of the activities, the
anxiety still produces meaningful results.

From both figures it is evident that the audio activity results in a higher attenuation of
the anxiety in comparison with just using the sensor data, as would be expected as the
person is in the room. The degree of audio activity present is indicated by the time-line
(lower graph). For both figures, the audio occurs more frequently in comparison with the
remaining monitored devices.

5.5.2. Abnormality: Absence of activity

The anxiety was determined for four abnormal scenarios characterised by a lack of
activity while the stove was in a hazardous state. Fig. 7 shows the anxiety, determined
using the combined audio and sensor data, for two examples of the abnormal scenarios
where activity is absent.

Fig. 7(a) depicts a normal breakfast scenario from 0 to 225 s with the last interaction
with the stove at 216 s. The user subsequently leaves the room without turning off the
stove. Note the absence of audio as the user left the room. The PSID of the stove rises to
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1.0 at 299 s, with the attenuated anxiety reaching 1.0 at 311 s due to the user interacting
with the environment after the last interaction with the stove, from 216 to 225 s.

Fig. 7(b) depicts a break in the normal breakfast scenario, at 80 s, characterised by an
absence of activity without completing the breakfast sequence, e.g. the user collapsed and
no longer made any noise. As no activity is present from the last interaction with the stove,
the anxiety raises to 1.0 at 162 s, without any attenuation effect.

In both cases the lack of audio activity meant the anxiety rose to 1.0, meaning an alarm
would be raised.

5.5.3. Abnormality: Presence of activity

The anxiety was then determined for three abnormal scenarios characterised by the
presence of activity within the room, and a lack of interaction with the stove while it was
in a hazardous state. Fig. 8 shows the anxiety, determined using the combined audio and
sensor data, for two examples of the abnormal scenarios where activity is present.

Fig. 8(a) depicts the normal breakfast scenario from 0 to 168 s, with 168 s being the time
of last interaction with the stove. The user subsequently forgets to turn off the stove after
cooking, but remains active within the room, both interacting with sensors and producing
audio activity. The PSID reaches 1.0 at 249 s, and the attenuated anxiety reaches 1.0 at
302 s. Fig. 8(a) displays a similar scenario, the PSID reaches 1.0 at 285 s, and the attenuated
anxiety reaches 1.0 at 380 s.

In this case, it is the absence of interaction with the stove that results in an increase
in the activity due to the use of the PIAD distribution. The presence of activity within the
environment results in an increased time for the anxiety to reach a value of 1.0.

5.5.4. Anxiety attenuation through events or devices

Eq. (10) accounts for all interactions of a user with the environment, while Eq. (11)
only accounts for the last interaction with each device. Fig. 9 shows the results for the
calculation of the anxiety using both methods for a normal scenario and the abnormal
scenario used for Fig. 8(a). The statistical model used for Eq. (11) was generated using
the last event for each device immediately prior to the interaction with the hazardous
device.

From the figure it can be seen that the inclusion of only the recent history for each device
results in a reduced attenuation of the anxiety in comparison with taking the recent history
of the activity of the user. There is less attenuation of the anxiety, along with a reduction of
the time period over which the attenuation occurs. For example, for the abnormal sequence
the attenuated anxiety reaches a value of 1.0 at 270 s, in comparison with 312 s for the
method associated with Eq. (10). This is due to the reduction in the expected time between
interacting with a passive device and subsequently interacting with the hazardous device
that is inherent in the generation of the statistical model.

Consequently the method associated with Eq. (11) is more appropriate when a more
sensitive indication of anxiety is required. Eq. (10) results in a lower overall anxiety for
sections of the sequences that are within the bounds of normality given the observed normal
sequences.
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5.6. Discussion

In this section we examine the results obtained from applying the anxiety model
to both normal and abnormal scenarios. For normal activity associated with the stove,
accounting for interaction with the environment successfully attenuated the anxiety. This
was especially prominent when accounting for audio, which resulted in an increased
attenuation of the anxiety as more environmental interactions were accounted for. The
attenuation of the anxiety reduces the number of false alarms raised by the system,
indicated by the occupant being active in the environment, and subsequently interacting
with the stove.

Two types of abnormal interaction with the stove were examined. The first was the
absence of activity either immediately or shortly after interacting with the stove, e.g. the
occupant experiences a fall. In this case the absence of activity after interacting with the
stove results in either no attenuation of the anxiety, or a short delay in reaching an anxiety
value of 1.0 (12 s). The second abnormal activity corresponded to the presence of activity
in the absence of an interaction with the stove, e.g. the occupant forgets to turn off the stove.
In this case, the presence of activity in the environment by the user results in the attenuation
of the anxiety, with a delay in reaching a value of 1.0. In both abnormal interaction cases
the alarm would be correctly raised. The delay in raising the alarm in the second case is
acceptable as the occupant is still active in the environment.

6. Feedback implementation

The link between the anxiety system and the user is completed through the use of a
personal digital assistant (PDA). Such a method is necessary due to the pessimistic nature
of the anxiety, requiring user interaction once the anxiety of the environment climbs above
a threshold.

The system uses a server for most of the processing with a back-end database to store
parameters, state of the house etc. and is accessible via the web for configuration, querying
by a carer and other activities.

A PDA is used for cognitive support which is wirelessly connected to the server so the
occupant is free to roam around the house. The server alerts the occupant via the PDA
about any hazards and expects the occupant to respond promptly. Lack of a prompt reply
alerts the server to a problem and the carer is alerted.

A server takes input from the sensors in the smart house and interacts with the web and
the PDA. All software for the server and PDA is written in Java for portability. The PDA
talks to the server via WiFi with the network layer on the server and PDA with messages
passed between the PDA and the server via object serialisation. A priority queue is used so
that important messages from the PDA can be processed immediately. The network layer
ensures continued connection between the server and client by keeping in constant contact.
If this contact is broken, it implies that the connection has been lost and the occupant is
out of range or something untoward has happened. The web-based interface uses a SQL
database as the back end. Features of the interface include the display of the real-time state
of the sensors in the house, log of events, parameters for the sensors and the means for
creating and modifying reminders for the occupant and carer. As the web-based interface
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is only for authorised users, it includes user account management facilities. The PDA
incorporates the popular alarm facility in which a button on the PDA is used for calling for
help. No interaction of the occupant with the device will eventually lead to the occupant
being reminded, via the PDA, that they have left the device unattended, and eventually, if
no action is taken, the device is turned off by the house and the carer notified.

The PDA extends the anxiety model as it closes the loop on the system querying the
occupant when it becomes anxious. Once the anxiety of the house reaches a certain level
the system causes the PDA to signal the occupant audibly and visually and displays a
message on the screen describing the hazard and whether this is okay for the occupant or
not. If the occupant responds “yes” the anxiety of the system is lowered for that device. If
the occupant responds “no”, or there is no response at all, the device is turned off and the
carer notified. The PDA is also given an anxiety value. If the occupant doesn’t respond to
an alert, the anxiety of the PDA rises eventually making the system alert the carer.

7. Conclusion

In this paper we have proposed a method for hazard detection in smart environments
using a fusion of multi-modal data within an emotive computing framework.

Previous approaches to determining abnormal activity have centred around activity
recognition fusing data collected from various sensors. We approach the problem from
a different perspective. Rather than using activity recognition, we determine normality
with respect to the patterns of interaction associated with each hazardous device. We use
a probabilistic approach that enables the modelling of complex interactions without being
reliant on the sequence of interactions.

The significance of this work lies in two key areas. Firstly, a scalable, agent based
method for detecting hazards in a smart house environment is proposed. Secondly, we
integrate multi-modal data from a number of sources into the anxiety framework. In
particular, the inclusion of audio as a pervasive sensor extends audio analysis to the field
of surveillance and monitoring. Audio is a powerful cue that can be mapped to higher level
semantic analysis.

The advantage of audio analysis in comparison with simple sensors lies in the contextual
and pervasive nature of the audio data. Audio also offers an advantage over video
analysis due to the lower processing overheads. Audio background modelling classifies
background audio according to the dominant characteristics of the audio over a period of
time. Foreground audio classification is therefore determined by a difference in the audio
signal from the background. The background is adaptively modelled on-line, enabling the
determination of the foreground sounds across varying and changing background audio.
We argue that the novel sounds, i.e. the foreground, are sounds associated with an activity.
This links the audio with a higher level semantic meaning.

The anxiety was determined for a number of normal and hazardous sequences,
producing meaningful results in both cases. The inclusion of the audio activity resulted
in a more meaningful attenuation of the anxiety as sounds are made by people even though
they are not interacting with a monitored device.

The anxiety represents a pessimistic emotive model, which is used to determine when an
occupant should be reminded of an ongoing hazard within the environment. The response



S. Moncrieff et al. / Pervasive and Mobile Computing 3 (2007) 74–94 93

can be used to manage the hazard, and to refine the anxiety model. Due to the probabilistic
and pessimistic approach, the parameters are learned incrementally for a particular person
and house by querying the occupant each time the anxiety threshold for a hazardous agent
is exceeded. As such, the inclusion of the PDA is crucial in training the anxiety model.
Initially the number of false alarms generated would be high. As each false alarm prompts
the user for a response via the PDA, normal interactions with hazardous agents are learned,
and over time the number of false alarms would fall.

Future work includes determining abnormal interaction with the environment given
spatial and temporal context. For example, the concept of anxiety could be used to
determine if the occupant has been in the bathroom for an unusually long period of time,
without interacting with the environment, given the time of day. When employed in such
a manner, the anxiety can be extended to determine unusual events, or interaction with the
environment, such as the occupant experiencing a fall.
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[14] S. Lühr, H.H. Bui, S. Venkatesh, G.A.W. West, Recognition of human activity through hierarchical
stochastic learning, in: IEEE International Conference on Pervasive Computing and Communications,
Texas, USA, 2003.

[15] N.T. Nguyen, H.H. Bui, S. Venkatesh, G. West, Recognising and monitoring high-level behaviours in
complex spatial environments, in: IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, Wisconsin, USA, 2003.



94 S. Moncrieff et al. / Pervasive and Mobile Computing 3 (2007) 74–94

[16] M. Vacher, D. Istrate, L. Besacier, J.F. Serignat, E. Castelli, Life sounds extraction and classification in
noisy environment, in: 5th IASTED-SIP, ACTA Press, Calgary, Hawaii, 2003.

[17] M. Vacher, D. Istrate, L. Besacier, J.F. Serignat, E. Castelli, Sound detection and classification for medical
telesurvey, in: 2nd Conference on Biomedical Engineering, Innsbruck, Austria, ACTA Press, Calgary, 2004,
pp. 395–398.

[18] J. Chen, A.H. Kam, J. Zhang, N. Liu, L. Shue, Bathroom activity monitoring based on sound, in: Pervasive
Computing, Munich, Germany, 2005, pp. 47–61.

[19] D.P.W. Ellis, Detecting alarm sounds, in: Consistent and Reliable Acoustic Cues for sound analysis,
Aalborg, Denmark, 2001.

[20] M. Cowling, R. Sitte, Comparison of techniques for environmental sound recognition, Pattern Recognition
Letters 24 (15) (2003) 2895–2907.

[21] M. Cowling, Non-speech environmental sound classification system for autonomous surveillance, Ph.D.,
Griffith University, 2004.
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