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ABSTRACT
Conventional wide-area video surveillance systems use a net-
work of fixed cameras positioned close to locations of in-
terest. We describe an alternative and flexible approach
to wide area surveillance based on observation streams col-
lected from mobile cameras mounted on buses. We allow a
“virtual observer” to be placed anywhere within the space
covered by the sensor network, and reconstruct the scene at
these arbitrary points. Use of such imagery is challenging
because mobile cameras have variable position and orienta-
tion, and sample a large spatial area but at low temporal res-
olution. Additionally, the views of any particular place are
distributed across many different video streams. Addressing
this problem, we present a system in which views from an
arbitrary perspective can be constructed by indexing, or-
ganising, and transforming images collected from multiple
streams acquired from a network of mobile cameras. Our
system supports retrieval of raw images based on constraints
of space, time, and geometry (eg. visibility of landmarks).
It also allows the synthesis of wide-angle panoramic views in
situations where the camera motion produces suitable sam-
pling of the scene and metaphors for query and presentation
that overcome the complexity of the data.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing; I.4.5 [Image Processing and Com-
puter Vision]: Reconstruction

General Terms
Algorithms, Measurement

Keywords
observation systems, mobile surveillance, video indexing,
scene reconstruction, panorama, virtual observer, spatial
query, visibility query.
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1. INTRODUCTION
Conventional wide-area video surveillance systems use a

network of fixed cameras positioned close to locations of
interest. With the inclusion of forward facing cameras on
buses (current installed systems include: London and Los
Angeles transport systems), government agencies may seek
to integrate this roaming video surveillance network into
the high-level strategic surveillance and security needs of
the city. Mobile surveillance on buses assists in the bat-
tle against street crime and antisocial behaviour, in the in-
vestigation of traffic accidents, in investigating activities of
people and with numerous other events that impact govern-
ment operations. For example in the London bombings of
July 7 2005, law enforcement authorities wanted to quickly
access the footage of an area around the bombing and the
only footage available was from the bus fleet. There are no
systems currently able to effectively address such issues in
wide area investigations. A surveillance initiative involving
a fleet of buses in a city such as London, delivers a powerful
network of over 8,300 mobile security cameras traversing the
city’s busiest regions, up to 24 hours a day, 7 days a week,
significantly complementing and enhancing the city’s static
surveillance infrastructure.

This paper explores an alternative and more flexible ap-
proach to exploit this new and exciting infrastructure by
creating the ability to have unlimited numbers of “virtual
observers” placed at chosen positions to monitor the scene,
spatially and over time. Surveillance along transport routes
is significant because they generally link areas where people
congregate, and thus provide coverage of important public
areas such as central business districts. Our work describes a
new approach to such wide area surveillance around trans-
port routes using GPS and frontal camera data acquired
from a transport network, and is an example of an observa-
tion system [14].

Although mobile cameras are used in specialised appli-
cations such as aerial survey (eg. UAVs), or observation
of harsh or dangerous environments (eg. undersea robots)
there appear to be no current attempts to use networks of
mobile cameras to observe the places where people typically
live and interact. The use of mobile cameras presents many
opportunities, but also many challenges: (a) mobile cam-
eras have both variable location and orientation, (b) mobile
cameras sample a large spatial area at low temporal resolu-
tion, (c) the views of a particular place are distributed across
many different video streams acquired by different sensors on
different mobile units, and (d) the cameras are continually
moving; there is no stable background image which makes it



difficult to do motion-based segmentation. In addition to the
challenges of interpreting the data, there is the important
issue of how to design systems that deal with large numbers
(eg. 1000 or 10000) of real-time streams, including both
video and trajectory information. In the data-management
field new systems are being developed to deal with the de-
mands of continuous stream-based processing, but these do
not generally deal with complex data such as images.

To exploit surveillance across this wide area network, we
develop the VIRTOBS system, which allows an operator to
see a view of a particular place over time. We use a net-
work of buses from which GPS data and the front-camera
video can be extracted. A virtual observer represents an
imaginary camera that can be placed anywhere in the space
covered by the sensor network. Each virtual observer is asso-
ciated with a position, radius, orientation, and field of view.
The system then constructs the view for a virtual observer
by indexing, organising, and transforming images collected
from the mobile camera network. Where possible, the sys-
tem may build composite images by combining observations
taken at different times. Queries supported by the system
include:

• Construction of the view from a virtual observer. Given
a source position, radius, orientation and field of view,
determine what is visible for that observer.

• Synthesis of panoramic images. Where the desired
field of view is wider than the camera view, we com-
bine multiple images taken at different times to give a
wide-angle perspective.

• Synthesis of “time-lapse” video, showing how a view of
a place changes over time. In a static-camera applica-
tion this is a trivial problem, but in a mobile environ-
ment this requires indexing, retrieval and registration
of images from multiple streams.

• Retrieval of views of a particular object or landmark.
Given a destination position and range of view an-
gles, retrieve matching images based on simple visibil-
ity constraints.

• Selection of images based on multiple spatial, temporal
and geometric constraints. For example, images may
be selected by choosing a position from a map, or by a
temporal constraint based on absolute time, or time-
of-day.

• Selection of video sequences based on spatial location,
and assembly of these sequences into a time-ordered
composite sequence.

To build such a system that answers these types of queries,
we focus on the following design issues:

• Data Access. Most queries are based on constraints,
so it is important that data be organised for both tem-
poral and spatial access.

• View Synthesis. To generate wide-angle (panorama)
views, and time-lapse views we need to make images
or video sequences that combine images taken from
different cameras at different times.

• Visual Query Design. Queries are based on a multi-
dimensional region of interest, which includes spatial,
temporal, and orientation constraints. These must be
specified in a natural way.

We provide effective data access by making video frames
accessible via spatial, temporal, or joint spatio-temporal
constraints. Each frame of video is associated with a time,
a spatial position, and an orientation. This is done by inter-
polating a position and heading from the GPS track based
on the frame sampling time. This enables us to determine
what a mobile camera sees at any given time, by incorporat-
ing its orientation relative to the vehicle, and the trajectory
of the vehicle over time.

Our approach to data management depends partly on fea-
tures of the existing bus infrastructure. Each bus has 7 cam-
eras which at typical sampling rates generate approximately
225Kb of data per second. A bus has enough storage for 8
to 9 days data. Wireless networks are used to retrieve data
when buses return to their depot, but there is only sufficient
bandwidth to retrieve about 5 percent of the collected data.
Therefore it is important that the system collect data ac-
cording to demand. Virtual observers can act as standing
queries that regulate the collection of data from the network.

View synthesis involves the retrieval and fusion of images
for a given query. Many query operations need to determine
views with respect to a particular place. This poses sev-
eral challenges in the context of mobile surveillance. Data
is collected in an ad-hoc way, so there is high variability
between the images that are available for a particular place
and time. The scene is sampled infrequently compared with
static-camera surveillance. Along a bus route a place is only
imaged when a bus is in the vicinity, so sampling times de-
pend on the frequency of buses on that route, resulting in a
sparse sampling of the environment. Images of a place are
taken by cameras mounted on different vehicles. There may
be significant differences due to sensor response, lighting,
and perspective. For simple image retrieval tasks, differ-
ences between images may not be a problem. However, for
panorama generation we need to be able to select a sequence
of relevant images, and then register images with respect to
a common reference frame. Orientation derived from GPS
data is not precise enough for image registration.

To address these issues we propose the following approach:
For image selection, we use constraints on position, heading,
and rate-of-change of heading to identify candidate image
sequences. For image registration and blending, we use the
techniques of Brown and Lowe [5]. The Scale Invariant Fea-
ture Transform (SIFT) [17] identifies feature points in im-
ages that can be used to compute the relative registration
of a sequence of images (“bundle adjustment”). Blending is
done at multiple spatial scales to reduce visual artifacts at
the joins between images. An advantage of using SIFT fea-
tures in this application is that they are invariant to many
of the differences that arise due to the mobile cameras (ie.
changes in perspective and lighting).

Lastly, seeking to provide natural metaphors that the user
can use to specify constraints, VIRTOBS includes a visual
query system where a user can place virtual observers on
a map. Observation parameters can be controlled by ma-
nipulating visual markers, and the resulting observer view
is automatically updated from the available observations in
the database. This allows the user to deal with the complex-
ity of the underlying data in which views of interest may be



distributed across time, space and orientation.
We demonstrate the efficacy of the systems using two data

sets, one acquired from a car, and the other using data
extracted from a real bus network. We show the results
of querying and observing the wide-areas using virtual ob-
servers. Our work demonstrates the power of the paradigm,
whilst identifying open problems for the community using
this new infrastructure.

The novelty of our system lies in being the first work to
address the issue of wide area surveillance using a trans-
port network and the multi-modal data streams acquired
from them. The underlying design allows effective retrieval
of frames in a spatio-temporal context from arbitrary per-
spectives, and to synthesise views of the environment to
overcome the issues of sparse sampling. We also introduce
novel query and presentation metaphors to make this com-
plex data useful and usable.

The significance of the approach lies in this untapped
application: wide area surveillance along transport routes.
This is useful since more than 80 percent of crime is com-
mitted withing 5 km of a transport route. Given that most
transport fleets have frontal cameras and GPS, these streams
can be used effectively for law enforcement. The design and
solutions presented in this paper forms the foundation of
this open and challenging area for multimedia.

The structure of this paper is as follows. Section 2 de-
scribes related work. Section 3 describes the data model,
and some query operators related to visibility. Section 4 de-
scribes the implementation of VIRTOBS, including details
of the bus network. Section 5 describes our experiments with
two data sets: one collected from a car, the other from a bus
network. This includes sample output for queries. Section
6 discusses some open problems identified from our work.

2. RELATED WORK
The problem of mobile surveillance is related to several

areas of active research, which are described in this section.
Video surveillance systems are increasing in their ability to
automate tasks like object tracking and event detection (see
2.1). Many of these problems are the same in mobile surveil-
lance, but camera motion imposes an extra level of difficulty.
The design of observation systems includes issues of real-
time, continuous queries over stream data. This issue is
also examined in many of the new stream-processing data
models, which support continuous queries over unbounded
data streams (see 2.2). In the spatial-database area, there
is considerable interest in data models and efficient queries
for moving objects (see 2.3). Some queries in VIRTOBS de-
pend on efficient, automatic alignment and stitching of im-
ages. This has become possible using modern feature-based
image matching techniques based on SIFT (see 2.4).

2.1 Observation Systems
Video surveillance is an area of active research. While

many of today’s video surveillance systems simply act as
large-scale video recorders, the next generation of systems
is being developed to automate many of the tasks that cur-
rently require the attention of a human operator. The main
areas of research are video-based detection and tracking,
video-based person identification, and the design of large-
scale systems. Key components of these new systems are
algorithms for object detection, two- and three-dimensional
object tracking, object classification, object structure anal-

ysis and movement pattern analysis [12]. A key challenge
in this area is to observe the scene at the correct scales.
For situation awareness systems must have a wide area of
observation, but for identifying an tracking people we must
observe fine details like faces. Active vision techniques al-
low systems to focus attention on significant objects using
pan-tilt-zoom (PTZ) cameras. Most wide-area surveillance
systems use static fixed cameras or PTZ cameras. Indeed,
many of the algorithms on which these rely (eg. background
subtraction for object segmentation) only work when there
is no camera motion. There have been no attempts to do
wide-area surveillance with mobile camera networks.

An emerging paradigm in this area is that of observa-
tion systems [14]. Observation systems observe people or
objects in the environment, collect data from multiple sen-
sors, analyse and correlate data from multiple sources to
derive a record of meaningful events, and provide tools to
query and present information about activities in the en-
vironment. Observation systems exist in many application
areas (eg. surveillance, situation awareness, traffic moni-
toring, population research, marketing) but share common
functionality and design principles.

2.2 Stream Query Systems
In the field of data management, stream processing has

become an important issue [10, 4]. Observation systems dif-
fer from traditional data-base applications in several ways:
(a) data comes from external sources (eg. sensors) and the
data-base must actively detect events rather than simply
respond to queries, (b) data management exists over a his-
tory of events, not just its current state, (c) applications are
event-oriented, requiring trigger processing beyond the ca-
pability of traditional DBMS systems, and (d) stream data
may be lost, stale, or intentionally omitted so queries may
have only approximate answers, and (e) real-time response
may be important [3].

These requirements have led to the development of gener-
alised stream-management systems such as Aurora [3], Bo-
realis [2], and TelegraphCQ [7]. These systems are designed
to handle a continuous inflow of data, and include the abil-
ity to handle continuous queries which continuously provide
new results as they become available. The emphasis of these
systems tends to be on real-time scalar data rather than me-
dia data such as video. Models have recently been developed
for stream queries over media data [16, 11].

2.3 Moving Object Databases
Mobile surveillance systems need to be able to deal with

large numbers of moving objects. Moving Object data-bases
are an emerging area of interest in spatial data-base systems.
The aim is to develop data models and query languages that
allow the modelling of objects with time-dependent position
[15]. Important abstractions are the moving point (eg. ve-
hicles, people, or animals), and the moving region (eg. hur-
ricanes, forest fires, oil spills at sea).

An important operation when dealing with moving ob-
jects is to efficiently index object trajectories. For uncon-
strained motion in two dimensions (eg. for ships moving at
sea), various approaches exist based on grid decomposition,
hashing, or hierarchical spatial decomposition (eg. R-Trees)
[9, 19]. Where vehicles move on a road network, specialised
data structures can be used to reduce the dimensionality of
the search problem (eg. the FNR-Tree, and MON-Tree) [8].



2.4 Image Stitching
Image alignment and stitching algorithms have long been

used to create high-resolution images out of mosaics of smaller
images. The earliest applications include the production
of maps from aerial photographs and satellite images. Re-
cently, these algorithms have been used in hand-held imag-
ing devices such as camcorders and digital cameras. Im-
age stitching requires several steps [21]. Firstly, a motion
model must be determined, which relates pixel coordinates
between images. Alignment of pairs of images is computed,
using direct pixel to pixel comparison, or using feature-based
techniques. Next, a globally consistent alignment (or “bun-
dle adjustment”) is computed for the overlapping images.
Next, a compositing surface is chosen onto which each of
the images is mapped according to its computed alignment.
The mapped images are then blended to produce the final
image. The blending algorithm needs to minimise visual ar-
tifacts at the joins between images, and needs to care for
difference in exposure between the source images.

Image stitching applications vary in the way they handle
motion, image alignment, and blending. Direct alignment
methods rely on cross-correlation of images, and tend not to
work well in the presence of rotation or foreshortening. Mod-
ern feature detectors can be quite robust in the presence of
certain amounts of affine transformation. Of particular note
is David Lowe’s SIFT (Scale-Invariant Feature Transform)
[17]. In a recent survey of a number of feature descriptors
[18], SIFT was found to be the most robust under image
rotations, scale-changes, affine transformation, and illumi-
nation changes. Brown and Lowe [5] describe an automatic
panorama stitcher based on SIFT feature matching. This
is one of the first implementations that can automatically
recognise multiple panoramas from an input set of images.
A commercial version of this algorithm, Autostitch [6], is
used under license in several photographic applications.

In the context of wide-area surveillance, image stitching
(or “mosaicing”) is important because it can be used to im-
prove the effective resolution of a camera. Pan-tilt-zoom
cameras can be used to scan a scene at different scale fac-
tors. By stitching many images collected at a high “zoom”
factor, a high-resolution virtual field of view can be created.
Heikkila and Pietikainen [13] describe a system that builds
image mosaics from sequences of video taken by a camera
that scans a scene. The implementation is similar to [5], but
with a few modifications to deal with large numbers of im-
ages. SIFT features are used in image alignment. Gaussian
blending is used for compositing images, but also to identify
small problems with image registration.

Panoramic stitching is typically applied to static scenes.
With a dynamic scene, different parts of the scene are seen
at different times so it is not possible to reconstruct a true
panoramic video by scanning the scene in this way. However,
by stacking the image frames in a three-dimensional space-
time volume, it is possible to generate movies by sweeping
this volume with a time-front surface. This process is de-
scribed by [20] as a “dynamic mosaic” or “Dynamosaic”.
Different interpretations of the original scene can be derived
by manipulating the time-front surface.

3. DATA AND QUERY MODEL
VIRTOBS manages data collected from mobile cameras.

As vehicles move around the environment their trajectory

is recorded via GPS. Each camera attached to a vehicle has
a known orientation relative to that vehicle; there may be
more than one external camera per vehicle. This allows the
system to determine a position and heading for each image
in the video stream.

At the base level the system records raw GPS streams
and video streams. Within each stream samples are ordered
by time, although the time-bases may be different. Video
data is stored as JPEG or MJPEG (motion JPEG) files.
In this application it is important not to use motion-based
coding. Motion coding tends to reduce the spatial resolution
but more importantly, interpolated video is inadmissible as
evidence in many legal jurisdictions.

A track is an association between a video stream and a
GPS trajectory. GPS positions for vehicles are recorded ev-
ery second. Video normally is sampled at a higher frame
rate (eg. 5 frames per second). Therefore, it is necessary
to interpolate between GPS position fixes in order to obtain
accurate image positions. Currently, linear interpolation is
used. Within a track, data is indexed by time; the track as-
sociation includes calibration between video and GPS time-
bases.

3.1 Geometric Queries
At the lowest level, spatial queries are implemented using

geometric operators on tracks. Users define points or regions
of interest through the visualisation system; the system in-
teractively produces views of those regions based on these
queries. Results from these queries are returned as times, or
intervals of times. Given a track and a time, we can easily
determine the associated spatial location, and the associated
frame of video. This section describes three query operators
implemented by VIRTOBS: proxobs, viewIn, and viewOut.

Formally, let V be a track. We define trajectory(V ) to
be the trajectory associated with track V . The trajectory is
a function that maps any point in time to a point in space
using using linear interpolation on the recorded GPS track.
The location of the vehicle at any point t in time is therefore
trajectory(V )(t), or simply trajectory(V, t) for short.

Also associated with V is a video sequence. We define an
observation to be a tuple 〈I, t〉, where I is an observed image,
and t is the time at which the observation occurred. The
video sequence vid(V ) is a sequence of N images Ii taken at
discrete times ti, [〈I0, t0〉 , ..., 〈IN−1, tN−1〉]. In many cases,
vid(V ) will be sampled periodically, but we do not require it
to be so. We can treat vid(V ) as a function that maps a time
to an observation. Define vid(V, t) to return the observation
〈I, t′〉 such that t′ is closest to t over all observations.

A track observation is a tuple 〈V, t〉, where V is a track,
and t is a time. A track segment is a tuple 〈V, t1, t2〉 where
t1 and t2 are times, and t1 ≤ t2. Track observations and
track segments are returned by geometric queries. Associ-
ated with each track observation is a unique observation (a
time-stamped image) vid(V, t). Associated with each track
segment is an observation sequence (a time-stamped video
segment) [vid(V, t1), ..., vid(V, t2)].

The simplest queries map a point in space to a track ob-
servation using recorded vehicle trajectories:

Definition 1 (proxobs : Closest observation). Let
P be a point in space. Let T be a set of tracks. We define
the function proxobs(P, T ) to return the track observation
〈V, t〉 , V ∈ T such that the distance from trajectory(V, t) to
P is minimised over all times and tracks.
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Figure 1: A simple visibility constraint defines a
circular region of space with radius R centered at P ,
and a range of view directions D − F to D + F .
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Figure 2: Interpretation of observer-target con-
straints for view operators.

The proxobs operator is computed by finding closest point
on each trajectory to P , and choosing the trajectory that
minimises this distance.

Visibility queries are more complex, being based on a set
of spatial constraints. A simple visibility constraint is a tuple
〈P, R, D, F 〉, where P is a point in space, R is a visibility
radius, D is a view direction, and F is a field of view. This
is depicted in Figure 1. A simple visibility constraint defines
an acceptance area and view range. The area is a circle of
radius R centered at P . The view range is the range of
directions between D−F and D + F . Visibility constraints
are used by view operators to select observations based on
visibility.

We use visibility constraints to reconstruct the view at
a particular point in space. The two fundamental visibil-
ity operators are viewOut and viewIn. Both operators use
simple visibility constraints, but interpret the constraints
differently as shown in Figure 2. In both cases, the observer
is located inside the view area. For the viewOut operator,
the view target is generally outside the defined area, al-
though its location is unknown to the system. The angular
constraint is on the direction from the observer toward the
target. For the viewIn operator, the view target is the cen-
ter of the defined area, and the constraint is on the direction
from the target to the observer. The additional parameter f
is related to the camera field of view and constrains the an-
gle between the target and the trajectory heading, defining
how central the target must be in the observed image.

Formally, let C = 〈P, R, D, F 〉 be a visibility constraint,
and T be a set of tracks.

Figure 3: Schematic view of virtual observer placed
on a map. The trajectories on the map indicate the
paths of vehicles. The background is an ECW image
of the street directory.

Definition 2 (viewOut : View from a place). We de-
fine the function viewOut(T, C) to be the set of track seg-
ments 〈V, t1, t2〉 where trajectory(V, t) is entirely contained
within the circle of radius R centered at P , and the head-
ing at trajectory(V, t) is between D − F and D + F for
t1 ≤ t ≤ t2.

Definition 3 (viewIn : View toward a place). We
define the function viewIn(T, C, f) to be the set of track seg-
ments 〈V, t1, t2〉 where trajectory(V, t) is entirely contained
within the circle of radius R centered at P , and the heading
of the line between P and trajectory(V, t) is between D−F
and D + F and is within the camera field of view f of the
trajectory heading at t, for t1 ≤ t ≤ t2.

These view operators can be rapidly computed from avail-
able trajectory information without reference to the associ-
ated video data. The operators produce a set of track seg-
ments that can be used in various ways by the system as de-
scribed in the following sections. Virtual observers use view
operators to create views of places; these can be defined in-
teractively through the visualisation system (see 3.2). Sets
of track segments can be used to construct “pseudo time-
lines” for navigation of video data (see 3.3). Track segments
can also be used as observations for panorama generation
(see 3.4).

3.2 Virtual Observers
VIRTOBS includes navigation of available data based on

map displays. These are layered spatial displays that show
trajectories for one or more tracks, marker objects (including
virtual observers) placed on the map by the operator, and
geographic meta-data. Spatial meta-data can be imported
from geographic information systems. The system supports
the use of ECW (Enhanced Compressed Wavelet) imagery
as display layers. This can be used to show street maps, or
aerial images associated with a spatial region.

A virtual observer combines a view operator with a simple
visibility constraint 〈P, R, D, F 〉 and is created interactively
by placing a marker on a map display. These markers may
be named and used for navigation in the map display. Figure
3 shows the schematic representation of a virtual observer on
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Figure 4: Pseudo time-line generated from multiple
track segments.

the map display. Trajectories on the map indicate the paths
of vehicles. The acceptance area is shown as a coloured circle
of radius R centered at P . The view direction is shown by
an arrow with direction D. The field of view is indicated
using a shaded arc from heading D − F to D + F . These
parameters may be varied by dragging points in the image
(eg. the circle boundary to change R, the circle interior
to move the center P , the arrow-head to rotate the view
direction D, and the arc boundaries to change the field of
view F ). A virtual observer is selected using the mouse, or
by choosing its name from a list. When selected the system
executes the associated view query, searching for trajectories
matching the associated constraints. The result is a set of
track segments where each image has a position within the
defined area and a heading within the constraint of the query
operator.

In addition to virtual observers, map displays implement
a “tracking” mode in which the user can move a cursor in
the display to select the closest matching observation. Given
a point P , the system computes 〈V, t〉 = proxobs(T, P ) and
displays the associated image vid(V, t). Depending on cur-
sor modifiers, T is either the set of all tracks, or a particular
selected track. Tracking can be used to generate a kind of
“virtual drive” effect, where a video sequence can be gener-
ated for an arbitrary trajectory through a map.

3.3 Pseudo time-lines
Virtual observers act as filters that select sets of track seg-

ments. It is important to be able to display and navigate the
associated video data. Showing the segment times on a lin-
ear time-line would not be very useful, since the durations of
the track segments are short compared to the times between
the segments. Instead, the system displays a pseudo-time-
line with just the duration of the segments, ordered accord-
ing to their start time. This clearly shows that the segments
of video are discontinuous, but allows them to be navigated
as a continuous sequence. Figure 4 shows a scenario where
three tracks traverse an observation area. The associated
track segments are bounded by the times that the camera is
resident within the area. The corresponding time line shown
below orders the segments as AA′,BB′,CC′. This resulting

Figure 5: Observation view showing pseudo-time-
line and associated image. Blocks in the time-line
indicate the order and relative duration of the track
segments, but not their absolute time.

time-line can be used to continuously navigate the set of
non-continuous video segments by moving the cursor across
the pseudo-time line.

Figure 5 shows example output from the system. In this
instance, there are five video segments in the data-base that
match the view constraints. The relative durations are in-
dicated by the different segment lengths. In the longer seg-
ment (for which the image is shown) the vehicle had to stop
to wait for an oncoming car.

A unique point in space trajectory(V, t) is associated with
any time t1 ≤ t ≤ t2 selected from a track segment 〈V, t1, t2〉.
The system implements a space-time cursor which allows the
user to see correspondence between points in the spatial map
display and the time-line display. When selecting points
in the time-line, the system highlights the corresponding
location in the map. Additionally, the user can select points
on tracks in the spatial display and see the corresponding
images.

3.4 Panorama Generation
When a vehicle turns, the forward-facing camera pans

across the scene producing a sequence of images which can
be combined to form a composite, wide-angle image. When
a virtual observer is placed at an intersection or turning in
the road, the matching track segments define a sequence
of images suitable for stitching. Alternatively, the system
can identify candidate track segments by looking for regions
where the rate-of-change of heading is high (10 degrees per
second seems to give good results). Example panoramas are
shown in Figures 7, 8 and 10 in section 5.

VIRTOBS uses the method of Brown and Lowe [5] to build
panoramas from a set of images. This involves several steps.
Feature points are identified using the SIFT [17] key-point



detector. Each key-point is associated with a position, a
scale, and orientation. SIFT features are robust to small
amounts of affine transformation. SIFT features are calcu-
lated for each input images. The k nearest-neighbours are
found for each feature. For each image, the algorithm con-
siders m images that have the greatest number of feature
matches to the current image. RANSAC is used to select
a set of inliers that are compatible with a homography be-
tween the images. A probabilistic model is then used to ver-
ify image matches. Bundle adjustment is then used to solve
for all of the camera parameters jointly. Once the camera
parameters have been estimated for each image, the images
can be rendered into a common reference frame. Multi-band
blending is then used to combine images.

VIRTOBS uses Autostitch [6] to implement panorama
construction. Although designed for photographic work, it
also works well for images taken from mobile video cameras.

4. IMPLEMENTATION
VIRTOBS is implemented in Java. We use Java Swing

components for user interface and visualisation. Media I/O
is done using either core Java classes, or QuickTime APIs.
Third-party components are used to render ECW images.
Autostitch1 is used for panorama stitching. There are sev-
eral main parts to the implementation. A low-level stream-
based storage management system handles video and GPS
data, which are stored on disk and indexed by time. At a
higher level a track management system relates video streams,
camera parameters and trajectories. This permits retrieval
based on spatial constraints such as proximity and visibility.

4.1 Data Sets
We used two data sets to evaluate the system. The first

data set (“car”) was collected in a regular passenger vehi-
cle. A DV camera was mounted on a tripod in the passenger
seat. Video was recorded in colour at 5 frames per second,
320x200 resolution to motion JPEG video files. Raw NMEA
GPS log files were recorded for the same time period, and
an offset (video time relative to GPS time) was determined
by interactively aligning the video and trajectory in the ap-
plication. The second data set (“bus”) was collected from
a commercial MDR (Mobile Digital Recorder) bus surveil-
lance system developed by DTI [1]. This data was recorded
at 1 frame per second, 384x288 resolution as JPEG images.
The data is stored in a proprietary format which includes
time-stamped images for multiple camera channels as well
as GPS positions; this was then extracted to standard for-
mats which are used by our system. Our trials used data
collected from the existing bus network. Some features of
this network are outlined below.

4.2 Bus Network
Each bus has 7 cameras that record 24-bit colour images

at 384x288 resolution. The global sampling rate is around
15 frames per second; this is shared between cameras as
required, giving around 2 images per second for each camera.
The sampling rate can be increased for particular cameras
by reducing the rate for others. Using JPEG compression, a
typical images is around 15Kb, giving an overall data rate of
approximately 225Kb per second. Typically, a bus operates

1The demonstration version of Autostitch [6] is called auto-
matically as part of our visualisation process.

Figure 6: Placement of observers for car panorama
experiments.

around 85 hours per week, resulting in about 67Gb of data
per week. Each bus is fitted with 80Gb of storage, so images
can be retained for 8 to 9 days.

When buses return to their depot, data is downloaded
via wireless LAN. The average operational time is 12 to 15
hours per day, which leaves about 8 to 10 hours per day
for downloads. Each depot has about 100 buses, but they
all converge around the same time, outside of “rush hours”.
The wireless link is 802.11g but despite the 54Mbps band-
width, the effective throughput is about 15–20Mbps. This
leaves in the worst case around 540Mb of data per bus per
day. This is sufficient to retrieve about 5 percent of the
video data. Thus, it is critical that the system is selective
about what data is retrieved and what data is discarded.

Given the constraints of the sensor network, it is impor-
tant that the system collect data based on demand. Rules
must be used to determine what data needs to be systemati-
cally recorded. For external cameras, these constraints could
be based on desired spatio-temporal resolution at different
places and times. Virtual observers provide another mecha-
nism for regulating data collection. Each observer indicates
an area of interest that may be stable over long periods of
time. Data around these points should always be collected
at high resolution in time and space.

5. EXPERIMENTS AND DISCUSSION
We evaluated VIRTOBS on the above two data sets to

determine how well the view operators work, and under
what circumstances panoramas can successfully be gener-
ated. There are some significant differences between the
two sets. The car data-set has a camera with high quality
optics, a high sampling rate, and highly linear images (ie.
no distortion). The bus data set has a lower sampling rate,
and significant spherical distortion due to a wide-angle lens.
In addition, the bus camera is mounted near the roof of the
bus, and its view out the windscreen is partially obstructed
by a strip of tinting that produces colour distortion.

Initial tests show results for the car images. Figure 6
shows the placement of two observers on a map. The top
observer (labelled “CnrBrandTownsing”) is placed at a cor-
ner close to a road-works site. The bottom observer (la-
belled “SouthEntrance”) covers an intersection with views
in many directions. We explored the generation of panora-
mas at these sites.



Figure 7: Three panoramas generated for virtual
observer “CnrBrandTownsing” shown in Figure 6.

5.1 Time-Lapse Panorama
Figure 7 shows several panoramic views generated auto-

matically from the “SouthEntrance” virtual observer using
the viewOut operator. Each panorama corresponds to a
separate traversal of an intersection, and is based on 20 to
30 frames taken over roughly 5 seconds. The panoramas are
not completely linear in size since the turn involves some
forward motion as well as a rotation. This means that the
later images are enlarged (ie. “zoomed”) relative to the
earlier images. During bundle-adjustment these images are
scaled down to fit a consistent reference frame. There are
also small variations in the shape of the resulting image, due
to differences in the original trajectories.

The virtual observer is located close to the site of road
works. The first image shows the the scene before the road
work starts. Subsequent images show the changes as works
progress: arrival of trucks in the second, and the erection of
portable barriers in the next.

5.2 Temporally Non-Continuous Panorama
An important feature of the panoramic stitching process is

that it simply relies on common features to compute image
registration. The previous panoramas are generated from
temporally contiguous samples, but this is not necessary for
the stitching to work. Providing there is sufficient overlap
sub-sequences can be taken at different times.

Figure 8 shows an example of the kind of scene that can
be generated by stitching together images taken at differ-
ent times. The output is from the “SouthEntrance” ob-
server. As a vehicle turns at an intersection, the forward
facing camera pans across part of the scene. The left-hand
portion of this image is derived from a right-turn from the
west-bound lane. The right-hand portion is derived from a
left-turn from the east-bound lane. When interpreting such

an image, it is important to recognise that the image is a
composite constructed from observations at different times.
While the large-scale structure will probably be correct, it
may be misleading to make assumptions about objects mov-
ing in the scene.

5.3 Simple time-lapse
A virtual observer can be used to select a sequence of im-

ages at a particular place. When viewed in sequence, this
give a time-lapse picture, showing how the scene changes
over time. For a fixed camera, this is a trivial operation.
For mobile cameras the system must retrieve and sequence
images from difference video streams based on spatial lo-
cation and orientation. An advantage of simple time-lapse
over panoramic time-lapse is that it does not require any
special camera motion. A disadvantage is that a relatively
narrow view of the scene is obtained.

Figure 9 shows a short time-lapse sequence captured from
the bus data set. It consists of three sequences retrieved
at 08:58:39, 16:01:28, and 16:29:15 from the bus network
footage. The first frame shows the scene in the morning
at 08:58:39. The second frame at 16:01:28 shows a crowd
of people in front of a building; the next frame at 16:29:15
shows that the crowd has dispersed, although a parked ve-
hicle can be seen in the same place.

Note that this figure demonstrates some problems with
accuracy in the GPS measurements that can occur when
the signal paths are obscured by buildings. This suggests
that better approaches to positioning (eg. involving intertial
navigation) may be required in some environments.

5.4 Low sampling-rate Panorama
The bus data set presented a few difficulties in the gen-

eration of panoramas. Firstly, the sampling rate (1 frame
per second) is low, so there is significant difference between
the frames that make up a track segment. Higher sampling
rates produce more overlap between frames which gives more
feature-point matches and better registration. Secondly,
spherical distortion affects both feature matching and regis-
tration of images (see Figure 9 for sample images). SIFT fea-
tures have an orientation which is used for feature matching.
The distortion leads to a relative scaling and rotation of fea-
tures between frames, which the SIFT is designed to handle,
but which may reduce the number of matches. More signif-
icant is the effect on bundle adjustment, since the spherical
view produces point correspondences that do not fit the cam-
era model. Despite these problems, some panoramas could
be generated. Figure 10 shows an example.

6. DISCUSSION AND OPEN PROBLEMS
While this paper lays the foundation for exploiting this

new and exciting infrastructure, we outline several open
challenges from our study.

Algorithms to deal with distortion and low sampling rates:
To overcome problems of lens distortion on buses we could
use a linear (non-distorting) lens, de-warp the images, or
change the camera model. Future trials will use a linear lens
positioned to avoid the window tinting. Combined with a
higher sampling rate, this is expected to significantly im-
prove the panorama quality. In the car data set, it was
found that taking every second frame did not significantly
reduce the ability to match frames, or the quality of the
panorama. However, taking every third frame did reduce



Figure 8: 180 degree synthetic panorama generated by fusing two sequences of video observations taken at
different times. The left-hand portion of this image is derived from a right-turn from the west-bound lane.
The right-hand portion is derived from a left-turn from the east-bound lane. This scene is generated by the
“SouthEntrance” virtual observer shown in Figure 6.

08:58:39 16:01:28 16:29:15

Figure 9: Time-lapse view of a place generated by the virtual observer shown in the inset.

Figure 10: Panorama of bus images generated by the virtual observer shown in inset.



the effectiveness of image matching. Therefore, roughly 2
frames per second is probably a minimum sampling rate for
this application.

Improved Blending Algorithms: In our experiments, most
of the processing time is required during the blending phase
of the algorithm. Using a simpler blending algorithm (eg.
linear blending instead of multi-band blending) improves
processing time dramatically. In an interactive setting where
response time is significant, it may make sense to progres-
sively improve the blending quality as images are viewed
for longer periods. For example, the initial image may be
presented using linear blending, while a multi-band blend
is started as a background process, taking maybe 20 or 30
seconds to complete with high quality settings.

Alternative configurations for data acquisition: The cur-
rent implementation assumes that the camera sweeps across
the scene by rotating around a common optical center. It
also works well where some forward motion occurs during
the rotation (ie. a forward-facing view from a turning vehi-
cle). Another model for sweeping a scene would be to have
a camera facing perpendicular to the direction of motion
(ie. a side-facing view from a vehicle). This latter model
has the advantage that almost any motion of the vehicle
would scan the scene, whereas the former model requires a
turning motion. It is expected that the approach of Brown
and Lowe would also work for side-facing cameras, although
some variation to the formulation of the camera homogra-
phies would improve the camera modelling. Indeed, this
approach (moving perpendicular to the view axis) is used in
most aerial photography applications. A related technique
is to use a scanning vertical “slit” to build “route panora-
mas” [22]. These give a strip-like panoramic representation
of the view to the side of a road.

7. CONCLUSION AND FUTURE WORK
The development of VIRTOBS is an attempt to under-

stand how we can deal with the complex data that arises
from mobile cameras. We have designed and implemented a
system that allows flexible querying of multiple observation
streams. We present the design of the system, the query
operators, and visualisation environment and demonstrate
its efficacy using two data-sets. We have received positive
interest from both public transport and law enforcement au-
thorities, which suggests that it is worth extending this pro-
totype to a fully-fledged system.
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